Arithmetic interpretation of the monadic fragment of intuitionistic predicate logic and Casari's formula

Julia Ilin*
joint work with Guram Bezhanishvili ${ }^{\dagger}$ and Kristina Brantley ${ }^{\dagger}$
*Institute of Logic, Language and Computation, Universiteit van Amsterdam, The Netherlands
${ }^{\dagger}$ Department of Mathematical Sciences, New Mexico State University, USA

TACL 2017, Prague, June 2017

Arithmetic interpretation of IPC

Arithmetic interpretation of IPC

- The Gödel-McKinsey-Tarski translation t embeds IPC into S4.

Arithmetic interpretation of IPC

■ The Gödel-McKinsey-Tarski translation t embeds IPC into Grzegorczyk logic Grz.

Arithmetic interpretation of IPC

■ The Gödel-McKinsey-Tarski translation t embeds IPC into Grzegorczyk logic Grz.

■ The splitting translation sp (replaces $\square \varphi$ with $\varphi \wedge \square \varphi$) embeds Grz into the Gödel-Löb logic GL.

Arithmetic interpretation of IPC

- The Gödel-McKinsey-Tarski translation t embeds IPC into Grzegorczyk logic Grz.

■ The splitting translation sp (replaces $\square \varphi$ with $\varphi \wedge \square \varphi$) embeds Grz into the Gödel-Löb logic GL.

Theorem (Grzegorczyk, Goldblatt, Boolos, Kuznetsov and Muravitsky)

For every formula φ of IPC,

$$
\mathrm{IPC} \vdash \varphi \text { iff } \mathrm{Grz} \vdash \mathrm{t}(\varphi) \text { iff } \mathrm{GL} \vdash \mathrm{sp}(\mathrm{t}(\varphi)) \text {. }
$$

Arithmetic interpretation of IPC

■ The Gödel-McKinsey-Tarski translation t embeds IPC into Grzegorczyk logic Grz.

■ The splitting translation sp (replaces $\square \varphi$ with $\varphi \wedge \square \varphi$) embeds Grz into the Gödel-Löb logic GL.

Theorem (Grzegorczyk, Goldblatt, Boolos, Kuznetsov and Muravitsky)

For every formula φ of IPC,

$$
\mathrm{IPC} \vdash \varphi \text { iff } \mathrm{Grz} \vdash \mathrm{t}(\varphi) \text { iff } \mathrm{GL} \vdash \mathrm{sp}(\mathrm{t}(\varphi)) \text {. }
$$

By Solovay's theorem, GL is arithmetically complete. This provides arithmetic interpretation of IPC.

Arithmetic interpretation of IPC

- The Gödel-McKinsey-Tarski translation t embeds IPC into Grzegorczyk logic Grz.

■ The splitting translation sp (replaces $\square \varphi$ with $\varphi \wedge \square \varphi$) embeds Grz into the Gödel-Löb logic GL.

Theorem (Grzegorczyk, Goldblatt, Boolos, Kuznetsov and Muravitsky)

For every formula φ of IPC,

$$
\mathrm{IPC} \vdash \varphi \text { iff } \mathrm{Grz} \vdash \mathrm{t}(\varphi) \text { iff } \mathrm{GL} \vdash \mathrm{sp}(\mathrm{t}(\varphi)) .
$$

By Solovay's theorem, GL is arithmetically complete. This provides arithmetic interpretation of IPC.

The goal of this talk is to lift the above correspondences to the monadic setting as was anticipated by Esakia.

Lifting the correspondences to the full predicate setting?

Lifting the correspondences to the full predicate setting?

- Let QIPC, QGrz, and QGL be the predicate extensions of IPC, Grz, and GL , respectively.

Lifting the correspondences to the full predicate setting?

- Let QIPC, QGrz, and QGL be the predicate extensions of IPC, Grz, and GL, respectively.
- QGL is not arithmetically complete. (Montagna 1984)

Lifting the correspondences to the full predicate setting?

- Let QIPC, QGrz, and QGL be the predicate extensions of IPC, Grz, and GL , respectively.
- QGL is not arithmetically complete. (Montagna 1984)
- QIPC is Kripke complete. (Kripke 1965)

Lifting the correspondences to the full predicate setting?

- Let QIPC, QGrz, and QGL be the predicate extensions of IPC, Grz, and GL, respectively.
- QGL is not arithmetically complete. (Montagna 1984)
- QIPC is Kripke complete. (Kripke 1965)

■ QGL and QGrz are not Kripke complete. (Montagna 1984, Ghilardi 1991)

Lifting the correspondences to the full predicate setting?

- Let QIPC, QGrz, and QGL be the predicate extensions of IPC, Grz, and GL, respectively.
- QGL is not arithmetically complete. (Montagna 1984)
- QIPC is Kripke complete. (Kripke 1965)

■ QGL and QGrz are not Kripke complete. (Montagna 1984, Ghilardi 1991)

Thus, arithmetic interpretation does not extend to the full predicate setting and a proof for the modal part of the correspondence would be essentially different than in the propositional case.

The one-variable setting (overview)

The one-variable setting (overview)

- The intuitionistic bi-modal logic MIPC axiomatizes the one-variable fragment of QIPC. (Bull 1966)

The one-variable setting (overview)

- The intuitionistic bi-modal logic MIPC axiomatizes the one-variable fragment of QIPC. (Bull 1966)
- Esakia introduced MGrz and MGL, the one variable fragments of QGrz and QGL, respectively.

The one-variable setting (overview)

- The intuitionistic bi-modal logic MIPC axiomatizes the one-variable fragment of QIPC. (Bull 1966)
- Esakia introduced MGrz and MGL, the one variable fragments of QGrz and QGL, respectively.
- MIPC, MGrz, and MGL are complete with respect to finite Kripke frames (Bull, Ono, Fisher-Servi, Japaridze)

The one-variable setting (overview)

■ The intuitionistic bi-modal logic MIPC axiomatizes the one-variable fragment of QIPC. (Bull 1966)

- Esakia introduced MGrz and MGL, the one variable fragments of QGrz and QGL, respectively.

■ MIPC, MGrz, and MGL are complete with respect to finite Kripke frames (Bull, Ono, Fisher-Servi, Japaridze)

- MGL is arithmetically complete. (Japaridze 1988)

The one-variable setting (overview)

- The intuitionistic bi-modal logic MIPC axiomatizes the one-variable fragment of QIPC. (Bull 1966)
- Esakia introduced MGrz and MGL, the one variable fragments of QGrz and QGL, respectively.

■ MIPC, MGrz, and MGL are complete with respect to finite Kripke frames (Bull, Ono, Fisher-Servi, Japaridze)

■ MGL is arithmetically complete. (Japaridze 1988)

- The (extended) Gödel-McKinsey-Tarski translation embeds MIPC into MGrz. (Fischer-Servi 1977)

The one-variable setting (overview)

■ The intuitionistic bi-modal logic MIPC axiomatizes the one-variable fragment of QIPC. (Bull 1966)

- Esakia introduced MGrz and MGL, the one variable fragments of QGrz and QGL, respectively.
- MIPC, MGrz, and MGL are complete with respect to finite Kripke frames (Bull, Ono, Fisher-Servi, Japaridze)

■ MGL is arithmetically complete. (Japaridze 1988)
■ The (extended) Gödel-McKinsey-Tarski translation embeds MIPC into MGrz. (Fischer-Servi 1977)

- However, the (extended) splitting translation does not embed MGrz into MGL.

MIPC

MIPC

$$
\begin{aligned}
\text { MIPC }=K_{\exists, \forall}+ & \{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
& \exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\} .
\end{aligned}
$$

MIPC

$$
\begin{aligned}
& \mathrm{MIPC}=K_{\exists, \forall}+\quad\{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
&\exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

MIPC

$$
\begin{aligned}
& \mathrm{MIPC}=K_{\exists, \forall}+\quad\{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
&\exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

- (W, \leq) is a partial order,

MIPC

$$
\begin{aligned}
\mathrm{MIPC}=K_{\exists, \forall}+ & \{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
& \exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

- (W, \leq) is a partial order,
- E is an equivalence relation on W,

MIPC

$$
\begin{aligned}
\mathrm{MIPC}=K_{\exists, \forall}+ & \{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
& \exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

- (W, \leq) is a partial order,
- E is an equivalence relation on W,
- $E \circ \leq \subseteq \leq \circ E$,

MIPC

$$
\begin{aligned}
\mathrm{MIPC}=K_{\exists, \forall}+ & \{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
& \exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

- (W, \leq) is a partial order,
- E is an equivalence relation on W,

MIPC

$$
\begin{aligned}
& \mathrm{MIPC}=K_{\exists, \forall}+\quad\{\forall p \rightarrow p, \quad \forall(p \wedge q) \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
&\exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

- (W, \leq) is a partial order,
- E is an equivalence relation on W,
- $E \circ \leq \subseteq \leq \circ E$, i.e. $\leq \underset{E}{\square}$ (commutativity).

If \mathfrak{F} is an MIPC-frame and $v: \operatorname{Prop} \rightarrow \mathrm{Up}_{\leq}(W)$ a valuation on \mathfrak{F},

MIPC

$$
\begin{aligned}
& \mathrm{MIPC}=K_{\exists, \forall}+\quad\{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
&\exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

- (W, \leq) is a partial order,
- E is an equivalence relation on W,
- $E \circ \leq \subseteq \leq \circ E$, i.e. $\leq{ }_{E}^{\leq}$(commutativity).

If \mathfrak{F} is an MIPC-frame and $v: \operatorname{Prop} \rightarrow \mathrm{Up}_{\leq}(W)$ a valuation on \mathfrak{F}, $x \models \varphi \rightarrow \psi \quad$ iff $\quad y \models \varphi$ implies $x \models \psi$ for all $x \leq y$,

MIPC

$$
\begin{aligned}
& \mathrm{MIPC}=K_{\exists, \forall}+\quad\{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
&\exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

- (W, \leq) is a partial order,
- E is an equivalence relation on W,
- $E \circ \leq \subseteq \leq \circ E$, i.e. $\leq \underset{E}{\circ}$ (commutativity).

If \mathfrak{F} is an MIPC-frame and $v: \operatorname{Prop} \rightarrow \mathrm{Up}_{\leq}(W)$ a valuation on \mathfrak{F},

$$
\begin{array}{lll}
x \models \varphi \rightarrow \psi & \text { iff } & y \models \varphi \text { implies } x \models \psi \text { for all } x \leq y, \\
x \models \exists \varphi & \text { iff } & y \models \varphi \text { for some } x E y .
\end{array}
$$

MIPC

$$
\begin{aligned}
& \mathrm{MIPC}=K_{\exists, \forall}+\quad\{\forall p \rightarrow p, \quad \forall(p \wedge q), \leftrightarrow(\forall p \wedge \forall q), \quad \forall p \rightarrow \forall \forall p \\
& p \rightarrow \exists p, \quad \exists(p \vee q) \leftrightarrow(\exists p \vee \exists q), \quad \exists \exists p \rightarrow \exists p, \\
&\exists p \rightarrow \forall \exists p, \quad, \exists \forall p \rightarrow \forall p, \quad \forall(p \rightarrow q) \rightarrow(\exists p \rightarrow \exists q)\}
\end{aligned}
$$

An MIPC-frame is of the form $\mathfrak{F}=(W, \leq, E)$, where

- (W, \leq) is a partial order,
- E is an equivalence relation on W,
- $E \circ \leq \subseteq \leq \circ E$, i.e. $\leq{ }_{E}$ (commutativity).

If \mathfrak{F} is an MIPC-frame and $v: \operatorname{Prop} \rightarrow \mathrm{Up}_{\leq}(W)$ a valuation on \mathfrak{F},

$$
\begin{array}{lll}
x \models \varphi \rightarrow \psi & \text { iff } & y \models \varphi \text { implies } x \models \psi \text { for all } x \leq y, \\
x \models \exists \varphi & \text { iff } & y \models \varphi \text { for some } x E y . \\
x \models \forall \varphi & \text { iff } & y \models \varphi \text { for all } x Q y, \text { where } Q:=\leq \circ E .
\end{array}
$$

MGrz

MGrz

- $\mathrm{MGrz}=\mathrm{S}_{\forall} \oplus \mathrm{Grz}+\square \forall p \rightarrow \forall \square p$

MGrz

- $\mathrm{MGrz}=\mathrm{S}_{\forall} \oplus \mathrm{Grz}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.

MGrz

- $\mathrm{MGrz}=\mathrm{S}_{\forall} \oplus \mathrm{Grz}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.
- An MGrz-frame is of the form $\mathfrak{F}=(W, R, E)$, where

MGrz

- $\mathrm{MGrz}=\mathrm{S}_{\forall} \oplus \mathrm{Grz}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.
- An MGrz-frame is of the form $\mathfrak{F}=(W, R, E)$, where
- (W, R) is a Noetherian partial order,

MGrz

- $\mathrm{MGrz}=\mathrm{S}_{\forall} \oplus \mathrm{Grz}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.
- An MGrz-frame is of the form $\mathfrak{F}=(W, R, E)$, where
- (W, R) is a Noetherian partial order,
- E is an equivalence relation on W,

MGrz

- $\mathrm{MGrz}=\mathrm{S}_{\forall} \oplus \mathrm{Grz}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.
- An MGrz-frame is of the form $\mathfrak{F}=(W, R, E)$, where
- (W, R) is a Noetherian partial order,
- E is an equivalence relation on W,
- $E \circ R \subseteq R \circ E$, i.e.

MGrz

- $\mathrm{MGrz}=\mathrm{S} 5_{\forall} \oplus \mathrm{Grz}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.
- An MGrz-frame is of the form $\mathfrak{F}=(W, R, E)$, where
- (W, R) is a Noetherian partial order,
- E is an equivalence relation on W,
- $E \circ R \subseteq R \circ E$, i.e.

- If \mathfrak{F} is an MGrz-frame and $v: \operatorname{Prop} \rightarrow \mathcal{P}(W)$ a valuation on \mathfrak{F},

$$
\begin{array}{ll}
x \models \square \varphi \quad \text { iff } \quad y \models \varphi \text { for all } x R y, \\
x \models \exists \varphi \quad \text { iff } \quad y \models \varphi \text { for some } x E y, \\
x \models \forall \varphi \quad \text { iff } \quad y \models \varphi \text { for all } x E y,
\end{array}
$$

Gödel-McKinsey-Tarski translation

Gödel-McKinsey-Tarski translation

■ (Extended) Gödel-McKinsey-Tarski translation t: MIPC \longrightarrow MGrz is

$$
\begin{aligned}
\mathrm{t}(p) & =\square p \\
\mathrm{t}(\perp) & =\square \perp \\
\mathrm{t}(\varphi \circ \psi) & =\mathrm{t}(\varphi) \circ \mathrm{t}(\psi) \quad \circ \in\{\wedge, \vee\} \\
\mathrm{t}(\varphi \rightarrow \psi) & =\square(\mathrm{t}(\varphi) \rightarrow \mathrm{t}(\psi)) \\
\mathrm{t}(\forall \varphi) & =\square \forall \mathrm{t}(\varphi), \\
\mathrm{t}(\exists \varphi) & =\exists \mathrm{t}(\varphi)
\end{aligned}
$$

Gödel-McKinsey-Tarski translation

■ (Extended) Gödel-McKinsey-Tarski translation $\mathrm{t}:$ MIPC \longrightarrow MGrz is

$$
\begin{aligned}
\mathrm{t}(p) & =\square p \\
\mathrm{t}(\perp) & =\square \perp \\
\mathrm{t}(\varphi \circ \psi) & =\mathrm{t}(\varphi) \circ \mathrm{t}(\psi) \quad \circ \in\{\wedge, \vee\} \\
\mathrm{t}(\varphi \rightarrow \psi) & =\square(\mathrm{t}(\varphi) \rightarrow \mathrm{t}(\psi)) \\
\mathrm{t}(\forall \varphi) & =\square \forall \mathrm{t}(\varphi), \\
\mathrm{t}(\exists \varphi) & =\exists \mathrm{t}(\varphi)
\end{aligned}
$$

- For every formula φ of MIPC, MIPC $\vdash \varphi$ iff $\operatorname{MGrz} \vdash \mathrm{t}(\varphi)$.

Gödel-McKinsey-Tarski translation

- (Extended) Gödel-McKinsey-Tarski translation $\mathrm{t}:$ MIPC \longrightarrow MGrz is

$$
\begin{aligned}
\mathrm{t}(p) & =\square p \\
\mathrm{t}(\perp) & =\square \perp \\
\mathrm{t}(\varphi \circ \psi) & =\mathrm{t}(\varphi) \circ \mathrm{t}(\psi) \quad \circ \in\{\wedge, \vee\} \\
\mathrm{t}(\varphi \rightarrow \psi) & =\square(\mathrm{t}(\varphi) \rightarrow \mathrm{t}(\psi)) \\
\mathrm{t}(\forall \varphi) & =\square \forall \mathrm{t}(\varphi), \\
\mathrm{t}(\exists \varphi) & =\exists \mathrm{t}(\varphi)
\end{aligned}
$$

- For every formula φ of MIPC, MIPC $\vdash \varphi$ iff MGrz $\vdash \mathrm{t}(\varphi)$.
- If $v: \operatorname{Prop} \rightarrow \mathcal{P}(W)$ is a valuation on a finite MGrz-frame \mathfrak{F}, let $v_{\square}(p)=\{x \mid x \models \square p\}$.

Gödel-McKinsey-Tarski translation

- (Extended) Gödel-McKinsey-Tarski translation $\mathrm{t}:$ MIPC \longrightarrow MGrz is

$$
\begin{aligned}
\mathrm{t}(p) & =\square p \\
\mathrm{t}(\perp) & =\square \perp \\
\mathrm{t}(\varphi \circ \psi) & =\mathrm{t}(\varphi) \circ \mathrm{t}(\psi) \quad \circ \in\{\wedge, \vee\} \\
\mathrm{t}(\varphi \rightarrow \psi) & =\square(\mathrm{t}(\varphi) \rightarrow \mathrm{t}(\psi)) \\
\mathrm{t}(\forall \varphi) & =\square \forall \mathrm{t}(\varphi), \\
\mathrm{t}(\exists \varphi) & =\exists \mathrm{t}(\varphi)
\end{aligned}
$$

- For every formula φ of MIPC, MIPC $\vdash \varphi$ iff MGrz $\vdash \mathrm{t}(\varphi)$.
- If $v: \operatorname{Prop} \rightarrow \mathcal{P}(W)$ is a valuation on a finite MGrz-frame \mathfrak{F}, let $v_{\square}(p)=\{x \mid x \models \square p\}$. Then for every φ of MIPC and $x \in W$,

$$
\mathfrak{F}, v_{\square}, x \models \varphi \text { iff } \mathfrak{F}, v, x \models \mathrm{t}(\varphi)
$$

MGL

MGL

- $\mathrm{MGL}=\mathrm{S}_{\forall} \oplus \mathrm{GL}+\square \forall p \rightarrow \forall \square p$

MGL

- $\mathrm{MGL}=\mathrm{S} 5_{\forall} \oplus \mathrm{GL}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg \varphi$.

MGL

- $\mathrm{MGL}=\mathrm{S} 5_{\forall} \oplus \mathrm{GL}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.
- An MGL-frame is of the form $\mathfrak{F}=(W, R, E)$, where

MGL

- $\mathrm{MGL}=\mathrm{S} 5_{\forall} \oplus \mathrm{GL}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg \varphi$.
- An MGL-frame is of the form $\mathfrak{F}=(W, R, E)$, where
- (W, R) is a transitive and conversely well-founded,

MGL

- $\mathrm{MGL}=\mathrm{S}_{\forall} \oplus \mathrm{GL}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.
- An MGL-frame is of the form $\mathfrak{F}=(W, R, E)$, where
- (W, R) is a transitive and conversely well-founded,
- E is an equivalence relation on W,

MGL

- $\mathrm{MGL}=\mathrm{S}_{\forall} \oplus \mathrm{GL}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg$.
- An MGL-frame is of the form $\mathfrak{F}=(W, R, E)$, where
- (W, R) is a transitive and conversely well-founded,
- E is an equivalence relation on W,
- $E \circ R \subseteq R \circ E$, i.e.

MGL

- $\mathrm{MGL}=\mathrm{S} 5_{\forall} \oplus \mathrm{GL}+\square \forall p \rightarrow \forall \square p$
- $\exists \varphi:=\neg \forall \neg \varphi$.
- An MGL-frame is of the form $\mathfrak{F}=(W, R, E)$, where
- (W, R) is a transitive and conversely well-founded,
- E is an equivalence relation on W,
- $E \circ R \subseteq R \circ E$, i.e.

- If \mathfrak{F} is an MGL-frame and $v: \operatorname{Prop} \rightarrow \mathcal{P}(W)$ a valuation on \mathfrak{F},

$$
\begin{aligned}
& x \neq \square \varphi \quad \text { iff } \quad y \models \varphi \text { for all } x R y, \\
& x \neq \forall \varphi \quad \text { iff } \quad y \models \varphi \text { for all } x E y,
\end{aligned}
$$

The splitting translation from MGrz to MGL is not faithful

The splitting translation from MGrz to MGL is not faithful

- Consider the following MGrz-model \mathfrak{F}

The splitting translation from MGrz to MGL is not faithful

- Consider the following MGrz-model \mathfrak{F}

$■ \mathfrak{F} \not \vDash \Psi:=\square(\square(q \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square} q$, where $\boldsymbol{\square} \varphi:=\square \forall \varphi$.

The splitting translation from MGrz to MGL is not faithful

- Consider the following MGrz-model \mathfrak{F}

$\llbracket \mathfrak{F} \not \vDash \Psi:=\square(\square(q \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square}$, where $\boldsymbol{\square} \varphi:=\square \forall \varphi$.

The splitting translation from MGrz to MGL is not faithful

- Consider the following MGrz-model \mathfrak{F}

$■ \mathfrak{F} \not \vDash \Psi:=\square(\square(q \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square} q$, where $\boldsymbol{\square} \varphi:=\square \forall \varphi$.

The splitting translation from MGrz to MGL is not faithful

- Consider the following MGrz-model \mathfrak{F}

$\llbracket \mathfrak{F} \not \vDash \Psi:=\square(\square(q \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square}$, where $\boldsymbol{\square} \varphi:=\square \forall \varphi$.

The splitting translation from MGrz to MGL is not faithful

- Consider the following MGrz-model \mathfrak{F}

$■ \mathfrak{F} \not \vDash \Psi:=\square(\square(q \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square}) \rightarrow \boldsymbol{\square} q$, where $\boldsymbol{\square} \varphi:=\square \forall \varphi$.
- But MGL $\models \operatorname{sp}(\Psi)$.

Adding Casari's formula

Adding Casari's formula

- We call an E-cluster \mathcal{C} of a frame clean iff for all $y \neq x$ in \mathcal{C}, $\neg(x R y)$.

Adding Casari's formula

- We call an E-cluster \mathcal{C} of a frame clean iff for all $y \neq x$ in \mathcal{C}, $\neg(x R y)$. We call \mathcal{C} dirty, otherwise.

Adding Casari's formula

- We call an E-cluster \mathcal{C} of a frame clean iff for all $y \neq x$ in \mathcal{C}, $\neg(x R y)$. We call \mathcal{C} dirty, otherwise.
- Finite MGL-frames have only clean E-clusters.

Adding Casari's formula

- We call an E-cluster \mathcal{C} of a frame clean iff for all $y \neq x$ in \mathcal{C}, $\neg(x R y)$. We call \mathcal{C} dirty, otherwise.
- Finite MGL-frames have only clean E-clusters.
- Consider

$$
\text { (MCas) } \quad \forall((p \rightarrow \forall p) \rightarrow p) \rightarrow \forall p .
$$

Adding Casari's formula

- We call an E-cluster \mathcal{C} of a frame clean iff for all $y \neq x$ in \mathcal{C}, $\neg(x R y)$. We call \mathcal{C} dirty, otherwise.
- Finite MGL-frames have only clean E-clusters.
- Consider

$$
\text { (MCas) } \quad \forall((p \rightarrow \forall p) \rightarrow p) \rightarrow \forall p .
$$

Lemma

1 A finite MIPC-frame validates MCas iff all its E-clusters are clean.
2 A finite MGrz-frame validates $\mathrm{t}(\mathrm{MCas})$ iff all its E-clusters are clean.

Adding Casari's formula

- We call an E-cluster \mathcal{C} of a frame clean iff for all $y \neq x$ in \mathcal{C}, $\neg(x R y)$. We call \mathcal{C} dirty, otherwise.
- Finite MGL-frames have only clean E-clusters.
- Consider

$$
\text { (MCas) } \quad \forall((p \rightarrow \forall p) \rightarrow p) \rightarrow \forall p .
$$

Lemma

1 A finite MIPC-frame validates MCas iff all its E-clusters are clean.
2 A finite MGrz-frame validates $\mathrm{t}(\mathrm{MCas})$ iff all its E-clusters are clean.

- Let $\mathrm{M}^{+} \mathrm{IPC}=\mathrm{MIPC}+\mathrm{MCas}$ and let $\mathrm{M}^{+} \mathrm{Grz}=\mathrm{MGrz}+\mathrm{t}(\mathrm{MCas})$.

Adding Casari's formula

- We call an E-cluster \mathcal{C} of a frame clean iff for all $y \neq x$ in \mathcal{C}, $\neg(x R y)$. We call \mathcal{C} dirty, otherwise.
- Finite MGL-frames have only clean E-clusters.
- Consider

$$
\text { (MCas) } \quad \forall((p \rightarrow \forall p) \rightarrow p) \rightarrow \forall p .
$$

Lemma

1 A finite MIPC-frame validates MCas iff all its E-clusters are clean.
2 A finite MGrz-frame validates $\mathrm{t}(\mathrm{MCas})$ iff all its E-clusters are clean.

- Let M^{+}IPC $=$MIPC + MCas and let M^{+}Grz $=\mathrm{MGrz}+\mathrm{t}$ (MCas).
- Note that $\mathrm{MGL} \vdash \mathrm{sp}(\mathrm{t}(\mathrm{MCas}))$, thus " $\mathrm{MGL}=\mathrm{M}^{+} \mathrm{GL}$ ".

The finite model property

Theorem
 M^{+}IPC has the fmp and so does $\mathrm{M}^{+} \mathrm{Grz}$.

The finite model property

Theorem
 M^{+}IPC has the fmp and so does $\mathrm{M}^{+} \mathrm{Grz}$.

- The proof is via selective filtration similar to that of MIPC due to (Grefe 1998).

The finite model property

Theorem
M^{+}IPC has the fmp and so does $\mathrm{M}^{+} \mathrm{Grz}$.

- The proof is via selective filtration similar to that of MIPC due to (Grefe 1998).
- Let us concentrate on M^{+}IPC.

The finite model property

Theorem

M^{+}IPC has the fmp and so does $\mathrm{M}^{+} \mathrm{Grz}$.

- The proof is via selective filtration similar to that of MIPC due to (Grefe 1998).
- Let us concentrate on M^{+}IPC.
- From a descriptive refutation frame (dual of a monadic Heyting algebra) we select a finite refutation frame.

The finite model property

Theorem

M^{+}IPC has the fmp and so does $\mathrm{M}^{+} \mathrm{Grz}$.

- The proof is via selective filtration similar to that of MIPC due to (Grefe 1998).
- Let us concentrate on M^{+}IPC.
- From a descriptive refutation frame (dual of a monadic Heyting algebra) we select a finite refutation frame.
- Note that descriptive M^{+}IPC-frames may have dirty clusters but the clusters in the maximum of an E-saturated clopen set are always clean.

Proof sketch

Proof sketch

- Suppose $\mathfrak{F}, v, x \not \vDash \varphi$, where \mathfrak{F}, v is a model based on a descriptive M^{+}IPC-frame; w.l.o.g. the E-cluster of x is clean).

Proof sketch

- Suppose $\mathfrak{F}, v, x \not \vDash \varphi$, where \mathfrak{F}, v is a model based on a descriptive M^{+}IPC-frame; w.l.o.g. the E-cluster of x is clean).
- We construct a finite frame \mathfrak{G} refuting φ in several rounds.

Proof sketch

- Suppose $\mathfrak{F}, v, x \not \vDash \varphi$, where \mathfrak{F}, v is a model based on a descriptive M^{+}IPC-frame; w.l.o.g. the E-cluster of x is clean).
- We construct a finite frame \mathfrak{G} refuting φ in several rounds.
- Each $t \in \mathfrak{G}$ is associated with some $\hat{t} \in \mathfrak{F}$.

Proof sketch

■ Suppose $\mathfrak{F}, v, x \not \models \varphi$, where \mathfrak{F}, v is a model based on a descriptive M^{+}IPC-frame; w.l.o.g. the E-cluster of x is clean).

- We construct a finite frame \mathfrak{G} refuting φ in several rounds.
- Each $t \in \mathfrak{G}$ is associated with some $\hat{t} \in \mathfrak{F}$.

Goal: $t \models \psi$ iff $\hat{t} \models \psi$ for all $\psi \in \operatorname{Sub}(\varphi)$.

Proof sketch

■ Suppose $\mathfrak{F}, v, x \not \models \varphi$, where \mathfrak{F}, v is a model based on a descriptive M^{+}IPC-frame; w.l.o.g. the E-cluster of x is clean).

- We construct a finite frame \mathfrak{G} refuting φ in several rounds.
- Each $t \in \mathfrak{G}$ is associated with some $\hat{t} \in \mathfrak{F}$.

$$
\text { Goal: } t \models \psi \text { iff } \widehat{t} \models \psi \text { for all } \psi \in \operatorname{Sub}(\varphi) \text {. }
$$

- For $t \in \mathfrak{G}$ consider the sets

$$
\begin{aligned}
\Sigma^{\exists}(t) & =\{\exists \delta \in \operatorname{Sub}(\varphi): \widehat{t} \vDash \exists \delta\} \\
\Sigma^{\forall H}(t) & =\{\forall \beta \in \operatorname{Sub}(\varphi): \widehat{t} \text { is maximal wrt } \forall \beta\} \\
\Sigma^{\forall V}(t) & =\{\forall \gamma \in \operatorname{Sub}(\varphi): \widehat{t} \not \nexists \forall \gamma \text { but is not maximal wrt } \forall \gamma\} \\
\Sigma^{\rightarrow}(t) & =\{\alpha \rightarrow \sigma \in \operatorname{Sub}(\varphi): \widehat{t} \nexists \alpha \rightarrow \sigma, \widehat{t} \nexists \alpha\}
\end{aligned}
$$

Proof sketch (continued)

- We add copies of witnesses for the formulas in the sets above, and we add points to ensure commutativity.

Proof sketch (continued)

- We add copies of witnesses for the formulas in the sets above, and we add points to ensure commutativity.
- We only add points t to \mathfrak{G} if \widehat{t} is from a clean cluster.

Proof sketch (continued)

- We add copies of witnesses for the formulas in the sets above, and we add points to ensure commutativity.
- We only add points t to \mathfrak{G} if \widehat{t} is from a clean cluster.
- Problematic case: Finding the right witnesses for formulas in $\Sigma \rightarrow(t)$. Here we may introduce R-arrows in \mathfrak{G} coming from original Q-arrows. (Here our proof differs from that of Grefe.)

Arithmetic interpretation of M^{+}IPC

Theorem

For every formula φ of MIPC,

$$
\mathrm{M}^{+} \mathrm{IPC} \vdash \varphi \text { iff } \mathrm{M}^{+} \mathrm{Grz} \vdash \mathrm{t}(\varphi) \text { iff } \mathrm{MGL} \vdash \mathrm{sp}(\mathrm{t}(\varphi)) .
$$

Arithmetic interpretation of M^{+}IPC

Theorem

For every formula φ of MIPC,

$$
\mathrm{M}^{+} \mathrm{IPC} \vdash \varphi \text { iff } \mathrm{M}^{+} \mathrm{Grz} \vdash \mathrm{t}(\varphi) \text { iff } \mathrm{MGL} \vdash \mathrm{sp}(\mathrm{t}(\varphi)) \text {. }
$$

Since Solovay's Theorem extends to MGL, we get an arithmetic interpretation of M^{+}IPC.

Arithmetic interpretation of M^{+}IPC

Theorem

For every formula φ of MIPC,

$$
\mathrm{M}^{+} \mathrm{IPC} \vdash \varphi \text { iff } \mathrm{M}^{+} \mathrm{Grz} \vdash \mathrm{t}(\varphi) \text { iff } \mathrm{MGL} \vdash \mathrm{sp}(\mathrm{t}(\varphi)) \text {. }
$$

Since Solovay's Theorem extends to MGL, we get an arithmetic interpretation of M^{+}IPC.

One variable fragments of predicate logics

One variable fragments of predicate logics

- For a formula φ of MIPC define a translation ψ to QIPC by
- $\Psi(p)=P(x)$, for each prop. letter p and a unary predicate $P(x)$,
- $\Psi(\varphi \circ \psi)=\Psi(\varphi) \circ \Psi(\psi)$ for $\circ \in\{\wedge, \vee, \rightarrow\}$
- $\Psi(\forall \varphi)=\forall x \Psi(\varphi)$,
- $\Psi(\exists \varphi)=\exists x \Psi(\varphi)$,

One variable fragments of predicate logics

- For a formula φ of MIPC define a translation ψ to QIPC by

■ $\Psi(p)=P(x)$, for each prop. letter p and a unary predicate $P(x)$,
■ $\Psi(\varphi \circ \psi)=\Psi(\varphi) \circ \Psi(\psi)$ for $\circ \in\{\wedge, \vee, \rightarrow\}$

- $\Psi(\forall \varphi)=\forall x \Psi(\varphi)$,

■ $\Psi(\exists \varphi)=\exists x \Psi(\varphi)$,

- Let MIPC $\subseteq \mathrm{L}$ be an intuitionistic bi-modal logic and let $\mathrm{QIPC} \subseteq \mathrm{S}$ an intuitionistic predicate logic.

L is the one-variable fragment of S iff for all φ of MIPC

$$
L \vdash \varphi \text { iff } S \vdash \Psi(\varphi)
$$

M^{+}IPC is the one-variable fragment of Q^{+}IPC

M^{+}IPC is the one-variable fragment of Q^{+}IPC

- (Ono and Suzuki 1988) identify a criterion to detect whether L is the one-variable fragment of S.

M^{+}IPC is the one-variable fragment of Q^{+}IPC

- (Ono and Suzuki 1988) identify a criterion to detect whether L is the one-variable fragment of S.

■ Let

$$
\text { (Cas) } \quad \forall x[(P(x) \rightarrow \forall x P(x)) \rightarrow \forall x P(x)] \rightarrow \forall x P(x) .
$$

M^{+}IPC is the one-variable fragment of Q^{+}IPC

- (Ono and Suzuki 1988) identify a criterion to detect whether L is the one-variable fragment of S.
- Let

$$
\text { (Cas) } \quad \forall x[(P(x) \rightarrow \forall x P(x)) \rightarrow \forall x P(x)] \rightarrow \forall x P(x) .
$$

- Let Q $^{+}$IPC $=$QIPC + Cas.

M^{+}IPC is the one-variable fragment of Q^{+}IPC

- (Ono and Suzuki 1988) identify a criterion to detect whether L is the one-variable fragment of S.

■ Let

$$
\text { (Cas) } \quad \forall x[(P(x) \rightarrow \forall x P(x)) \rightarrow \forall x P(x)] \rightarrow \forall x P(x) .
$$

- Let Q $^{+}$IPC $=$QIPC + Cas.

Corollary
M^{+}IPC is the one-variable fragment of Q^{+}IPC.

Thank you!

