Proper multi-type display calculi for classical and intuitionistic inquisitive logic

Giuseppe Greco
Delft University of Technology, The Netherlands www.appliedlogictudelft.nl

TACL 2017, Prague

Joint work with Sabine Frittella, Fan Yang and Alessandra Palmigiano

Outline

(9) Inquisitive logic
(2) A multi-type inquisitive logic
(3) Intermezzo on proof theory
4. A multi-type sequent calculus for inquisitive logic

Inquisitive logic (Ciardelli, Groenendijk and Roelofsen 2009)

Assertions

Questions

Inquisitive logic (Ciardelli, Groenendijk and Roelofsen 2009)

Assertions

p: "Moctezuma Xocoyotzin was the second Aztec emperor." q : "Moctezuma defeated the Spanish invasion."

Questions

Inquisitive logic (Ciardelli, Groenendijk and Roelofsen 2009)

Assertions

p: "Moctezuma Xocoyotzin was the second Aztec emperor." q : "Moctezuma defeated the Spanish invasion."

Questions
?p: "Was Moctezuma Xocoyotzin the second Aztec emperor?"

Inquisitive logic (Ciardelli, Groenendijk and Roelofsen 2009)

Assertions

p: "Moctezuma Xocoyotzin was the second Aztec emperor." q : "Moctezuma defeated the Spanish invasion."

Questions

?p: "Was Moctezuma Xocoyotzin the second Aztec emperor?"

An information state (or team): a set of valuations

Inquisitive logic (Ciardelli, Groenendijk and Roelofsen 2009)

Assertions

p: "Moctezuma Xocoyotzin was the second Aztec emperor." q : "Moctezuma defeated the Spanish invasion."

Questions

?p: "Was Moctezuma Xocoyotzin the second Aztec emperor?"

An information state (or team): a set of valuations

Team Semantics (Hodges 1997)

Inquisitive logic (Ciardelli, Groenendijk and Roelofsen 2009)

Assertions

p: "Moctezuma Xocoyotzin was the second Aztec emperor." q : "Moctezuma defeated the Spanish invasion."

Questions

?p: "Was Moctezuma Xocoyotzin the second Aztec emperor?"

An information state (or team): a set of valuations

Team Semantics (Hodges 1997)

Applied to Dependence logic (Väänänen 2007)

Inquisitive logic (InqL)

Syntax

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi(\neg \phi::=\phi \rightarrow \perp)
$$

Inquisitive logic (InqL)

Syntax

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi(\neg \phi::=\phi \rightarrow \perp)
$$

Team Semantics Let S be a team (i.e., a set of valuations).

- $S \models p$ iff for all $v \in S, v(p)=1$

Inquisitive logic (InqL)

Syntax

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi(\neg \phi::=\phi \rightarrow \perp)
$$

Team Semantics Let S be a team (i.e., a set of valuations).

- $S \models p$ iff for all $v \in S, v(p)=1$
- $S \vDash \perp$ iff $S=\emptyset$

Inquisitive logic (InqL)

Syntax

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi(\neg \phi::=\phi \rightarrow \perp)
$$

Team Semantics Let S be a team (i.e., a set of valuations).

- $S \models p$ iff for all $v \in S, v(p)=1$
- $S \vDash \perp$ iff $S=\emptyset$
- $\boldsymbol{S} \models \phi \wedge \psi$ iff $\boldsymbol{S} \models \phi$ and $\boldsymbol{S} \models \psi$
- $\boldsymbol{S} \models \phi \vee \psi$ iff $\mathcal{S} \models \phi$ or $\boldsymbol{S} \models \psi$

```
10
```

11

Inquisitive logic (InqL)

Syntax

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi(\neg \phi::=\phi \rightarrow \perp)
$$

Team Semantics Let S be a team (i.e., a set of valuations).

- $S \models p$ iff for all $v \in S, v(p)=1$
- $S \vDash \perp$ iff $S=\emptyset$
- $\boldsymbol{S} \models \phi \wedge \psi$ iff $\boldsymbol{S} \models \phi$ and $\boldsymbol{S} \models \psi$
- $\boldsymbol{S} \models \phi \vee \psi$ iff $\mathcal{S} \models \phi$ or $S \models \psi$
- $S \models \phi \rightarrow \psi$ iff for any $T \subseteq S$:

$$
T \models \phi \Longrightarrow T \models \psi .
$$

Inquisitive logic (InqL)

Syntax

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi(\neg \phi::=\phi \rightarrow \perp)
$$

Team Semantics Let S be a team (i.e., a set of valuations).

- $S \models p$ iff for all $v \in S, v(p)=1$
- $S \vDash \perp$ iff $S=\emptyset$
- $\boldsymbol{S} \models \phi \wedge \psi$ iff $\boldsymbol{S} \models \phi$ and $\boldsymbol{S} \models \psi$
- $\boldsymbol{S} \models \phi \vee \psi$ iff $\mathcal{S} \models \phi$ or $S \models \psi$
- $S \models \phi \rightarrow \psi$ iff for any $T \subseteq S$:

$$
T \models \phi \Longrightarrow T \models \psi .
$$

(Downward Closure) For every formula ϕ of InqL,

$$
T \subseteq S \models \phi \Longrightarrow T \models \phi
$$

inquisitive logic (InqL)

Syntax

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi(\neg \phi::=\phi \rightarrow \perp)
$$

Team Semantics Let S be a team (i.e., a set of valuations).

- $S \models p$ iff for all $v \in S, v(p)=1$
- $S \models \perp$ iff $S=\emptyset$
- $\boldsymbol{S} \models \phi \wedge \psi$ iff $\boldsymbol{S} \models \phi$ and $\boldsymbol{S} \models \psi$
- $\mathcal{S} \models \phi \vee \psi$ iff $\mathcal{S} \models \phi$ or $S \models \psi$
- $S \models \phi \rightarrow \psi$ iff for any $T \subseteq S$:

$$
T \models \phi \Longrightarrow T \models \psi .
$$

Def. A formula ϕ is said to be flat iff for all teams S,

$$
S \models \phi \Longleftrightarrow \forall v \in S, v(\phi)=1 .
$$

inquisitive logic (InqL)

Syntax

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi(\neg \phi::=\phi \rightarrow \perp)
$$

Team Semantics Let S be a team (i.e., a set of valuations).

- $S \models p$ iff for all $v \in S, v(p)=1$
- $S \models \perp$ iff $S=\emptyset$
- $\boldsymbol{S} \models \phi \wedge \psi$ iff $\boldsymbol{S} \models \phi$ and $\boldsymbol{S} \models \psi$
- $\boldsymbol{S} \models \phi \vee \psi$ iff $\mathcal{S} \models \phi$ or $\boldsymbol{S} \models \psi$
- $S \models \phi \rightarrow \psi$ iff for any $T \subseteq S$:

$$
T \models \phi \Longrightarrow T \models \psi .
$$

Def. A formula ϕ is said to be flat iff for all teams S,

$$
S \models \phi \Longleftrightarrow \forall v \in S, v(\phi)=1 .
$$

Fact: A formula α is flat iff it is equivalent to some \vee-free formula.

$$
\text { iff } \neg \neg \alpha \equiv \alpha
$$

Theorem (Ciardelli, Roelofsen, 2009)

The following Hilbert-style system of InqL is sound and complete:
Axioms:
(1) IPC axiom schemata
(2) Kreisel-Putnam axiom schemata:

$$
(\neg \phi \rightarrow(\psi \vee \chi)) \rightarrow(\neg \phi \rightarrow \psi) \vee(\neg \phi \rightarrow \chi)
$$

(3) $\neg \neg p \rightarrow p$

Rule:
Modus Ponens

- InqL $=K P \oplus \neg \neg p \rightarrow p$

Theorem (Ciardelli, Roelofsen, 2009)

The following Hilbert-style system of InqL is sound and complete:
Axioms:
(1) IPC axiom schemata
(2) Kreisel-Putnam axiom schemata:

$$
(\neg \phi \rightarrow(\psi \vee \chi)) \rightarrow(\neg \phi \rightarrow \psi) \vee(\neg \phi \rightarrow \chi)
$$

(3) $\neg \neg p \rightarrow p$

Rule:
Modus Ponens

- InqL $=K P \oplus \neg \neg p \rightarrow p$
- InqL is NOT closed under uniform substitution.

Theorem (Ciardelli, Roelofsen, 2009)

The following Hilbert-style system of InqL is sound and complete:
Axioms:
(1) IPC axiom schemata
(2) Kreisel-Putnam axiom: For any flat formula α,

$$
(\alpha \rightarrow(\psi \vee \chi)) \rightarrow(\alpha \rightarrow \psi) \vee(\alpha \rightarrow \chi)
$$

(3) $\neg \neg \alpha \rightarrow \alpha$ for any flat formula α

Rule:
Modus Ponens

- InqL $=K P \oplus \neg \neg p \rightarrow p$
- InqL is NOT closed under uniform substitution.

A multi-type inquisitive logic

Flat Type

General Type

Fix a set V of propositional variables.

Flat Type
$\mathbb{B}=\left(\wp\left(2^{V}\right), \cap, \cup,(\cdot)^{c}, \emptyset, 2^{V}\right)$

General Type

Fix a set V of propositional variables.

Flat Type

$$
\mathbb{B}=\left(\wp\left(2^{V}\right), \cap, \cup,(\cdot)^{c}, \emptyset, 2^{V}\right)
$$

General Type

$$
\mathbb{A}=\left(\wp^{\downarrow}(\mathbb{B}), \cap, \cup, \Rightarrow, \emptyset, \wp\left(2^{V}\right)\right)
$$

Fix a set V of propositional variables.

Flat Type

$$
\mathbb{B}=\left(\wp\left(2^{V}\right), \cap, \cup,(\cdot)^{c}, \emptyset, 2^{V}\right)
$$

General Type

$$
\mathbb{A}=\left(\wp^{\downarrow}(\mathbb{B}), \cap, \cup, \Rightarrow, \emptyset, \wp\left(2^{V}\right)\right)
$$

Fix a set V of propositional variables.

Flat Type

General Type

$$
\mathbb{B}=\left(\wp\left(2^{v}\right), \cap, \cup,(\cdot)^{c}, \emptyset, 2^{v}\right) \quad \mathbb{A}=\left(\wp^{\downarrow}(\mathbb{B}), \cap, \cup, \Rightarrow, \emptyset, \wp\left(2^{v}\right)\right)
$$

Fix a set V of propositional variables.

Flat Type

General Type

$$
\mathbb{B}=\left(\wp\left(2^{V}\right), \cap, \cup,(\cdot)^{c}, \emptyset, 2^{V}\right) \quad \mathbb{A}=\left(\wp^{\downarrow}(\mathbb{B}), \cap, \cup, \Rightarrow, \emptyset, \wp\left(2^{V}\right)\right)
$$

Fix a set V of propositional variables.

Flat Type

General Type

$$
\mathbb{B}=\left(\wp\left(2^{V}\right), \cap, \cup,(\cdot)^{c}, \emptyset, 2^{V}\right) \quad \mathbb{A}=\left(\wp^{\downarrow}(\mathbb{B}), \cap, \cup, \Rightarrow, \emptyset, \wp\left(2^{V}\right)\right)
$$

$$
f^{*} \dashv f \dashv \downarrow
$$

Fix a set V of propositional variables.

Flat Type

General Type

$$
\mathbb{B}=\left(\wp\left(2^{V}\right), \cap, \cup,(\cdot)^{c}, \emptyset, 2^{V}\right) \quad \mathbb{A}=\left(\wp^{\downarrow}(\mathbb{B}), \cap, \cup, \Rightarrow, \emptyset, \wp\left(2^{V}\right)\right)
$$

$$
f^{*} \dashv f \dashv \downarrow
$$

Multi-type inquisitive logic:

Flat $\ni \alpha::=p|0| \alpha \sqcap \alpha \mid \alpha \rightarrow \alpha$
General $\ni A::=\downarrow \alpha|A \wedge A| A \vee A \mid A \rightarrow A$

Multi-type inquisitive logic:

$$
\begin{gathered}
\text { Flat } \ni \alpha::=p|0| \alpha \sqcap \alpha \mid \alpha \rightarrow \alpha \\
\text { General } \ni \boldsymbol{A}::=\downarrow \alpha|\boldsymbol{A} \wedge \boldsymbol{A}| \boldsymbol{A} \vee \boldsymbol{A} \mid \boldsymbol{A} \rightarrow \boldsymbol{A}
\end{gathered}
$$

- Axioms:
(A1) CPC axiom schemata for Flat-formulas
(A2) IPC axiom schemata for General-formulas
(A3) $(\downarrow \alpha \rightarrow(A \vee B)) \rightarrow(\downarrow \alpha \rightarrow A) \vee(\downarrow \alpha \rightarrow B)$
(A4) $\neg \neg \downarrow \alpha \rightarrow \downarrow \alpha$
- Rule:

Modus Ponens for formulas of both types

Multi-type inquisitive logic:

$$
\begin{gathered}
\text { Flat } \ni \alpha::=p|0| \alpha \sqcap \alpha \mid \alpha \rightarrow \alpha \\
\text { General } \ni A::=\downarrow \alpha|A \wedge A| A \vee A \mid A \rightarrow A
\end{gathered}
$$

- Axioms:
(A1) CPC axiom schemata for Flat-formulas
(A2) IPC axiom schemata for General-formulas
(A3) $(\downarrow \alpha \rightarrow(A \vee B)) \rightarrow(\downarrow \alpha \rightarrow A) \vee(\downarrow \alpha \rightarrow B)$
(A4) $\neg \neg \downarrow \alpha \rightarrow \downarrow \alpha$
- Rule:

Modus Ponens for formulas of both types

Multi-type inquisitive logic:

$$
\begin{gathered}
\text { Flat } \ni \alpha::=p|0| \alpha \sqcap \alpha \mid \alpha \rightarrow \alpha \\
\text { General } \ni A::=\downarrow \alpha|A \wedge A| A \vee A \mid A \rightarrow A
\end{gathered}
$$

- Axioms:
(A1) CPC axiom schemata for Flat-formulas
(A2) IPC axiom schemata for General-formulas
(A3) $(\downarrow \alpha \rightarrow(A \vee B)) \rightarrow(\downarrow \alpha \rightarrow A) \vee(\downarrow \alpha \rightarrow B)$
(A4) $\neg \neg \downarrow \alpha \rightarrow \downarrow \alpha$
- Rule:

Modus Ponens for formulas of both types

$$
\left(f^{*} \dashv f \dashv \downarrow\right)
$$

Intermezzo on proof theory

Canonical cut elimination, 1/2

Definition
 A sequent $x \vdash y$ is type-uniform if x and y are of the same type.
 A (cut) rule is strongly type-uniform if its premises and conclusion are of the same type.

Theorem (Canonical cut elimination)
If a calculus satisfies the properties below, then it enjoys cut elimination.

Canonical cut elimination, 2/2

(1) structures can disappear, formulas are forever;
(2) tree-traceable formula-occurrences, via suitably defined congruence:

- same shape, same position, same type, non-proliferation;
(3) principal = displayed
(4) rules are closed under uniform substitution of congruent parameters within each type;
(5) reduction strategy exists when cut formulas are both principal. Specific to multi-type setting:
(6) type-uniformity of derivable sequents;
(7) strongly uniform cuts in each/some type(s).

A multi-type sequent calculus for inquisitive logic

Structural and operational languages

Flat

$$
\begin{aligned}
& \alpha::=p|0| \alpha \sqcap \alpha \mid \alpha \rightarrow \alpha \\
& \Gamma::=\alpha|\Phi| \Gamma, \Gamma|\Gamma \sqsupset \Gamma| \mathrm{F} X
\end{aligned}
$$

General

$A::=\downarrow \alpha|A \wedge A| A \vee A \mid A \rightarrow A$ $X::=A|\Downarrow \Gamma| \mathrm{F}^{*} \Gamma|X ; X| X>X$

Structural and operational languages

Flat

$$
\begin{aligned}
& \alpha::=p|0| \alpha \sqcap \alpha \mid \alpha \rightarrow \alpha \\
& \Gamma::=\alpha|\Phi| \Gamma, \Gamma|\Gamma \sqsupset \Gamma| \mathrm{F} X
\end{aligned}
$$

General

$$
\begin{aligned}
& A::=\downarrow \alpha|A \wedge A| A \vee A \mid A \rightarrow A \\
& X::=A|\Downarrow \Gamma| F^{*} \Gamma|X ; X| X>X
\end{aligned}
$$

Interpretation of structural connectives

Flat connectives:

Structural symbols	Φ		,		\sqsupset	
Operational symbols	(1)	0	Π	(\sqcup)	(\mapsto)	\rightarrow

General connectives:

Structural symbols	$;$		$>$	
Operational symbols	\wedge	\vee	(\longmapsto)	\rightarrow

Multi-type connectives:

Structural symbols	F^{*}		F		\Downarrow	
Operational symbols	$\left(\mathrm{f}^{*}\right)$		(f)	(f)		

Cut rules

$$
\frac{\Gamma \vdash \alpha \quad \alpha \vdash \Delta}{\Gamma \vdash \Delta} \text { cut } \quad \frac{X \vdash A \quad A \vdash Y}{X \vdash Y} \text { cut }
$$

Structural rules

Flat type:

$$
\operatorname{ld} \frac{}{p \vdash p} \quad \frac{\Pi \vdash \Gamma \sqsupset(\Delta, \Sigma)}{\Pi \vdash(\Gamma \sqsupset \Delta), \Sigma} C G \quad \frac{\Pi \vdash(\Gamma \sqsupset \Delta), \Sigma}{\Pi \vdash \Gamma \sqsupset(\Delta, \Sigma)} I G
$$

Interaction between the two types:

$$
\begin{aligned}
& \frac{\Gamma \vdash \Delta}{\mathrm{F}^{*} \Gamma \vdash \Downarrow \Delta} \text { bal } \quad \frac{X \vdash Y}{\mathrm{~F} X \vdash \mathrm{~F} Y} \text { f mon } \\
& \xlongequal[\Gamma \vdash \mathrm{F} \Delta]{\mathrm{F}^{*} \Gamma \vdash \Delta} \mathrm{fadj} \quad \xlongequal[X \vdash \Downarrow \Gamma]{\mathrm{F} X \vdash \Gamma} \mathrm{~d} \text { adj } \quad \frac{X \vdash \Downarrow \mathrm{~F} Y}{X \vdash Y} \mathrm{~d} \text {-f elim } \\
& \frac{X \vdash \Downarrow(\Gamma \sqsupset \Delta)}{\overline{X \vdash \mathrm{~F}^{*} \Gamma>\Downarrow \Delta}} \mathrm{d} \text { dis } \quad \frac{\mathrm{F} X, \mathrm{~F} Y \vdash Z}{\mathrm{~F}(X ; Y) \vdash Z} \mathrm{f} \text { dis } \\
& \frac{X \vdash \mathrm{~F}^{*} \Gamma>(Y ; Z) \quad X \vdash \mathrm{~F}^{*} \Gamma>(Y ; Z)}{X \vdash\left(\mathrm{~F}^{*} \Gamma>Y\right) ;\left(\mathrm{F}^{*} \Gamma>Z\right)} \mathrm{KP}
\end{aligned}
$$

Completeness 1/2

Completeness 2/2

Future work: intuitionistic inquisitive logic

(Ciardelli, lemhoff and Yang 2017)

Fix an set V of propositional variables.

$$
\begin{array}{cc}
\text { Flat Type } & \text { General Type } \\
\mathbb{B}^{\prime}=\left(\wp^{\downarrow}\left(2^{v}\right), \cap, \cup, \Rightarrow, \emptyset, 2^{\vee}\right) & \mathbb{A}^{\prime}=\left(\wp^{\downarrow}\left(\mathbb{B}^{\prime}\right), \cap, \cup, \Rightarrow, \emptyset, \wp\left(2^{\vee}\right)\right)
\end{array}
$$

