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Classical algebras of binary relations
The calculus of binary relations was developed by

A. De Morgan [1864], C. S. Peirce [1883], and E. Schröder [1895]

At the time it was considered one of the cornerstones of mathematical logic

Alfred Tarski [1941] gave a set of axioms, refined in 1943 to 10 equational
axioms, for (abstract) relation algebras

Jónsson-Tarski [1948]: A relation algebra (RA) A is a Boolean algebra
with a binary associative operator ; such that: ; has a unit element 1,

x`` = x , (xy)` = y`x` and x`;¬(x ; y) ≤ ¬y



Independence of Tarski’s 10 axioms
(R1) x ∨ y = y ∨ x (R6) x`` = x
(R2) x ∨ (y ∨ z) = (x ∨ y) ∨ z (R7) (xy)` = y`x`

(R3) ¬(¬x ∨ y) ∨ ¬(¬x ∨ ¬y) = x (R8) (x ∨ y); z = x ; z ∨ y ; z
(R4) x ; (y ; z) = (x ; y); z (R9) (x ∨ y)` = x` ∨ y`

(R5) x ; 1 = x (R10) x`;¬(x ; y) ∨ ¬y = ¬y

Joint work with H. Andreka, S. Givant and I. Nemeti [to appear]

For each (Ri) show that (Ri) does not follow from the other identities

McKinsey [early 1940s] showed the independence of (R4)

Need to find an algebra Ai where (Ri) fails and the other identities hold

For example: for (R1) define A1 = ({1, a},∨,¬, ; ,` , 1) where 1 is an
identity for ; distinct from a, a; a = 1, x` = ¬x = x , and x ∨ y = x

Check that (R1) fails: 1 ∨ a = 1 6= a = a ∨ 1 and (R2-R10) hold in A1



Summary of other independence models
A2 = {−1, 0, 1} where x ∨ y = min(max(x + y , 1),−1) truncated addition

− is subtraction, ; is multiplication, x` = x and 1 = 1

(R2) fails since 1 ∨ (1 ∨ −1) = 1 ∨ 0 = 1, but (1 ∨ 1) ∨ −1 = 1 ∨ −1 = 0

and it is equally easy to check the other identities hold

A3 = {0, 1} with ∨ = join, −x = x` = x , ; = ∧, and 1 = 1

Fact 1: For a group G the complex algebra G+ = (P(G ),∪,−, ; ,` , {e})
is a (representable) relation algebra where X ;Y = {xy : x ∈ X , y ∈ Y }
and X` = {x−1 : x ∈ X}

For b ∈ A, define the relativization A�b = ({a∧b : a ∈ A},∨,−b, ;b ,` , 1)

where 1 ≤ b = b`, −bx = −x ∧ b and x ;b y = x ; y ∧ b

Fact 2: A�b satisfies (R1-3,5-10) and (R4) ⇐⇒ b; b ≤ b

A4 = (Z2 × Z2)
+ � {(0, 0), (0, 1), (1, 0)} has 8 elements



A5 = 2-element Boolean algebra with x ; y = 0, x` = x and 1 = 1

A6 = 2-element Boolean algebra with x ; y = x ∧ y , x` = 0 and 1 = 1

A7 = {⊥, 1,−1,>} a BA with x ; y =

{
x if y = 1
0 otherwise

, x` = x and 1 = 1

A8 = {0, 1} a BA with x ; y =

{
1 if x , y = 0
x ∧ y otherwise

, x` = x and 1 = 1

A9 = Z+
3 , but for x ∈ {1, 2} and y , z ∈ Z3 redefine {x}` = {x} and

{x}; {y , z} = {x−1 · y , x−1 · z} where −1, · are the group operations in Z3

A10 = {0, 1} a BA with ; = ∨, x` = x , 1RA = 0

In each case one needs to check that Ai 6|= (Ri), but the other axioms hold:

(R10) let x=y=1 in x`;− (x ;y)∨ − y = 1∨ − (1∨1)∨ − 1 = 1 6= 0 = −y



A variant of Tarski’s axioms
Theorem (Andreka, Givant, J., Nemeti)
The identities (R1)-(R10) are an independent basis for RA.

Somewhat surprisingly, it turns out that by modifying (R8) slightly, (R7)
becomes redundant:

Let R = (R1)-(R6),(R9),(R10) plus (R8’) = x ; (y ∨ z) = x ; y ∨ x ; z

(R1) x ∨ y = y ∨ x (R6) x`` = x
(R2) x ∨ (y ∨ z) = (x ∨ y) ∨ z (R7) (x ; y)` = y`; x`

(R3) ¬(¬x ∨ y) ∨ ¬(¬x ∨ ¬y) = x (R8’) x ; (y ∨ z) = x ; y ∨ x ; z
(R4) x ; (y ; z) = (x ; y); z (R9) (x ∨ y)` = x` ∨ y`

(R5) x ; 1 = x (R10) x`;¬(x ; y) ∨ ¬y = ¬y

Theorem (Andreka, Givant, J., Nemeti)
The identities R are also an independent basis for RA.



Another variant of Tarski’s axioms

Let S = (R1)-(R6),(R8),(R8’),(R10)

(R1) x ∨ y = y ∨ x (R6) x`` = x
(R2) x ∨ (y ∨ z) = (x ∨ y) ∨ z (R7) (x ; y)` = y`; x`

(R3) ¬(¬x ∨ y) ∨ ¬(¬x ∨ ¬y) = x (R8) (x ∨ y); z = x ; z ∨ y ; z
(R4) x ; (y ; z) = (x ; y); z (R8’) x ; (y ∨ z) = x ; y ∨ x ; z
(R5) x ; 1 = x (R9) (x ∨ y)` = x` ∨ y`

(R10) x`;¬(x ; y) ∨ ¬y = ¬y

Theorem (Andreka, Givant, J., Nemeti)
The identities S are also an independent basis for RA.

The independence models A1−A10 are modified somewhat for these proofs.

All models are minimal in size and the paper also describes other models.



Nonclassical axiomatization of relation algebras

An idempotent semiring (ISR) is of the form (A,∨, ·, 1) where

(A,∨) is a semilattice (i.e., ∨ is assoc., comm., idempotent)
(A, ·, 1) is a monoid
x(y ∨ z) = xy ∨ xz and (x ∨ y)z = xz ∨ yz

Residuated lattices (RL) are ISRs expanded with ∧, \, /

Involutive residuated lattices (InRL) are RLs expanded with 0,∼,−
such that ∼x = x\0, −x = 0/x and −∼x = x = ∼−x

Cyclic residuated lattices are InRLs that satisfy ∼x = −x

Generalized bunched implication algebras are RLs expanded with →

Residuated monoids (RM) are Boolean residuated lattices

Relations algebras are RMs with x` = ¬∼x , (xy)` = y`x`
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Varieties of partially ordered algebras

Idempotent Semirings

Residuated Lattices

InRL GBI

CyRL InGBI RM

CyGBI InRM

wRA CyRM

RwRA RA

Representable Relation Algebras



Varieties of partially ordered algebras

Idempotent Semirings (∨, ·, 1)

Residuated Lattices

InRL GBI

CyRL InGBI RM

CyGBI InRM

wRA CyRM

RwRA RA

Representable Relation Algebras

add ∧, \, / xy ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y

0, −∼x = x = ∼−x

∼x = −x

x ∧ y ≤ z ⇔ y ≤ x → z

¬x = x → ⊥, ¬¬x = x

x` = ¬∼x , (xy)` = y`x`



Residuated lattices
A residuated lattice is of the form A = (A,∧,∨, ·, 1, \, /) where (A,∧,∨)
is a lattice, (A, ·, 1) is a monoid and \, / are the left and right residuals of
·, i.e., for all x , y , z ∈ A

xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y .

The previous formula is equivalent to the following 4 identities:

x ≤ y\(yx ∨ z) x((x\y) ∧ z) ≤ y

x ≤ (xy ∨ z)/y ((x/y) ∧ z)y ≤ x

so residuated lattices form a variety.

For an arbitrary constant 0 in a residuated lattice define the linear
negations ∼x = x\0 and −x = 0/x

An involutive residuated lattice is a residuated lattice s.t.
∼−x = x = −∼x



Involutive residuated lattices

Alternatively, (A,∧,∨, ·, 1, 0,∼,−) is an involutive residuated lattice if
(A,∧,∨) is a lattice, (A, ·, 1) is a monoid, ∼−x = x = −∼x , 0 = −1 and
x ≤ −y ⇐⇒ xy ≤ 0.

It follows that x\y = ∼(−y · x) and x/y = −(y · ∼x).

An involutive residuated lattice is cyclic if ∼x = −x

E.g. a relation algebra (A,∧,∨,¬, ·,` , 1) is a cyclic involutive
residuated lattice if one defines x\y = ¬(x` · ¬y), x/y = ¬(¬x · y`) and
0 = ¬1, and omits the operations ¬,` from the signature

The cyclic linear negation is given by ∼x = ¬(x`) = (¬x)`

The variety of (cyclic) involutive residuated lattices has a decidable
equational theory while this is not the case for relation algebras



Generalized bunched implication algebras
A generalized bunched implication algebra (A,∧,∨,→,>,⊥, ·, 1, \, /)
is a residuated lattice (A,∧,∨, ·, 1, \, /) such that (A,∧,∨,→,>,⊥) is a
Heyting algebra, i.e., >,⊥ are top and bottom elements and

x ∧ y ≤ z ⇐⇒ y ≤ x → z

or equivalently the following 2 identities hold

x ≤ y → ((x ∧ y) ∨ z) x ∧ (x → y) ≤ y

Theorem (Galatos and J.)
The variety GBI of generalized bunched implication algebras has the finite
model property, hence a decidable equational theory

The intuitionistic negation is defined as ¬x = x → ⊥

RA = cyclic involutive GBI ∩ Mod(¬¬x = x ,¬∼(xy) = (¬∼y)(¬∼x))



Number of nonisomorphic algebras

Number of elements: n = 1 2 3 4 5 6 7 8
Residuated lattices 1 1 3 20 149 1488 18554 295292

GBI-algebras 1 1 3 20 115 899 7782 80468
Bunched impl. algebras 1 1 3 16 70 399 2261 14358
Involutive resid. lattices 1 1 2 9 21 101 284 1464
Cyclic inv. resid. lattices 1 1 2 9 21 101 279 1433

Invol. GBI-algebras 1 1 2 9 8 43 49 282
Cyclic inv. GBI-algebras 1 1 2 9 8 43 48 281

Invol. BI-algebras 1 1 2 9 8 42 46 263
Res. Bool. Monoids (RM) 1 1 0 5 0 0 0 25
Classical relation algebras 1 1 0 3 0 0 0 13



Weakening relations
Recall that RA and RRA both have undecidable equational theories

I. Nemeti [1987] proved that removing associativity from the basis of
RA the resulting variety NRA of nonassociative relation algebras has a
decidable equational theory

N. Galatos and J. [2012] showed that if classical negation in RA is
weakened to a De Morgan negation then the resulting variety qRA of
quasi relation algebras has a decidable equational theory

However there are no natural models using binary relations

Let P = (P,v) be a partially ordered set

Let Q ⊆ P2 be an equivalence relation that contains v, and define the
set of weakening relations on P by Wk(P,Q) = {v ◦ R ◦ v : R ⊆ Q}

Since v is transitive and reflexive Wk(P,Q) = {R ⊆ Q : v◦R ◦v = R}



Full weakening relation algebras

If Q = P ×P write Wk(P) and call it the full weakening relation algebra

Weakening relations are the analogue of binary relations when the
category Set of sets and functions is replaced by the category Pos of
partially ordered sets and order-preserving functions

Since sets can be considered as discrete posets (i.e. ordered by the
identity relation), Pos contains Set as a full subcategory, which implies that
weakening relations are a substantial generalization of binary relations

However, weakening relations do not allow ¬ or ` as operations

They have applications in sequent calculi, proximity lattices/spaces,
order-enriched categories, cartesian bicategories, bi-intuitionistic
modal logic, mathematical morphology and program semantics, e.g.
via separation logic



A small example

Let C2 = {0, 1} be the two element chain with 0 v 1

∅

{(0, 1)}

{(0, 1), (1, 1)}{(0, 0), (0, 1)}

{(0, 0), (0, 1), (1, 1)} = v

C2 × C2

Figure: The full weakening relation algebra Wk(C2)



Operations on weakening relations

Wk(P,Q) is a complete and perfect distributive lattice under ∪,∩

=⇒ can expand Wk(P,Q) to a Heyting algebra by adding →

Weakening relations are closed under composition: for R,S ∈Wk(P,Q)

R ◦ S = (v ◦ R ◦ v) ◦ (v ◦ S ◦ v) = v ◦ (R ◦ v ◦ S) ◦ v ∈Wk(P,Q)

v is an identity element for composition: R ◦ v = R = v ◦ R

◦ distributes over arbitrary unions, so we can add residuals \, /

So Wk(P,Q) is a distributive residuated lattice with Heyting implication



Representable intuitionistic relation algebras

Theorem

Wk(P,Q) = (Wk(P,Q),∩,∪,→,Q, ∅, ◦,v,∼) is a cyclic involutive
GBI-algebra.

In particular, > = Q, ⊥ = ∅,

R → S = (w ◦ (R ∩ S ′) ◦ w)′ where S ′ = Q − S ,

and ∼R = R`′ = R ′`.

In Wk(P), if R 6= ⊥ then > ◦ R ◦ > = >



If P is a discrete poset then Wk(P) = Rel(P) is the full representable
relation algebra on the set P

So algebras of weakening relations are like representable relation algebras

Define the class RwRA of representable weakening relation algebras as
all algebras that are embedded in a weakening algebra Wk(P,Q) for some
poset P and equivalence relation Q that contains v

In fact the variety RRA is a finitely axiomatizable subvariety of RwRA

Theorem

1 RwRA is a discriminator variety with x ↔ y = (x → y) ∧ (y → x)
t(x , y , z) = (x ∧ >(∼(x ↔ y)>) ∨ (z ∧ ∼>(∼(x ↔ y)>)

2 RRA is the subvariety of RwRA defined by ¬¬x = x

3 RwRA is not finitely axiomatizable relative to the variety GBI



Poset semantics of weakening relations
Birkhoff showed that a finite distributive lattice A is determined by its poset
J(A) of completely join-irreducible elements (with the order induced by A)

The result also holds for complete perfect distributive lattices

Conversely, if Q = (Q,≤) is a poset, then the set of downward-closed
subsets D(Q) of Q forms a complete perfect distributive lattice under
intersection and union

D(Q) is a Heyting algebra, with U → V = Q − ↑(U − V ) for any
U,V ∈ D(Q)

For a poset P, Wk(P) is complete and perfect and J(Wk(P)) ∼= P× P∂

The composition ◦ of Wk(P) is determined by its restriction to pairs of
P× P∂ , where ◦ is a partial operation given by

(t, u) ◦ (v ,w) =

{
(t,w) if u = v

undefined otherwise.



Semantics of relation algebras

For comparison, we first consider the case of relation algebras.

A complete perfect relation algebra has a complete atomic Boolean algebra
as reduct, and the set of join-irreducibles is the set of atoms.

B. Jónsson and A. Tarski [1952] showed the operation of composition,
restricted to atoms, is a partial operation precisely when the atoms form a
(Brandt) groupoid, or equivalently a small category with all morphism
being invertible.

For Heyting relation algebras we have a similar result using
partially-ordered groupoids



Groupoids and partially ordered groupoids

A groupoid is defined as a partial algebra G =(G , ◦,−1 ) such that ◦ is a
partial binary operation and −1 is a (total) unary operation on G that
satisfy:

1 (x ◦ y) ◦ z ∈ G or x ◦ (y ◦ z) ∈ G =⇒ (x ◦ y) ◦ z = x ◦ (y ◦ z),
2 x ◦ y ∈ G ⇐⇒ x−1 ◦ x = y ◦ y−1,
3 x ◦ x−1 ◦ x = x and x−1−1 = x .

These axioms imply (x ◦ y)−1 = y−1 ◦ x−1

Typical examples of groupoids are disjoint unions of groups and the
pair-groupoid (X × X , ◦,` )



Partially ordered groupoid semantics

A partially-ordered groupoid (G ,≤, ◦,−1 ) is a groupoid (G , ◦,−1 ) such
that (G ,≤) is a poset and ◦,−1 are order-preserving:

x ≤ y and x ◦ z , y ◦ z ∈ G =⇒ x ◦ z ≤ y ◦ z
x ≤ y =⇒ y−1 ≤ x−1

x ≤ y ◦ y−1 =⇒ x ≤ x ◦ x−1

If P = (P,≤) a poset then P×P∂ = (P × P,≤, ◦,` ) is a partially-ordered
groupoid with (a, b) ≤ (c , d) ⇐⇒ a ≤ c and d ≤ b.

Theorem
Let G = (G ,≤, ◦,−1) be a partially-ordered groupoid. Then D(G) is a
cyclic involutive GBI-algebra.



Semantics for full weakening relation algebras
In fact for a poset P = (P,v) the weakening relation algebra Wk(P) is
obtained from the partially-ordered pair-groupoid G = P× P∂

For example, the 3-element chain C3 gives a 9-element partially ordered
groupoid, and Wk(C3) has 20 elements

(0, 2)

(1, 2)

(2, 2)

(0, 1)

(2, 1)

(0, 0)

(1, 0)

(2, 0)

⊥
{(0, 2)}

↓{(1, 2)}

↓{(2, 2)}

↓{(0, 1)}

0↓{(0, 0)}

↓{(2, 1)}1↓{(1, 0)}

>

Figure: The weakening relation Wk(C3) and its po-pair-groupoid



Cardinality of Wk(Cn)

Theorem
For an n-element chain Cn the weakening relation algebra Wk(Cn) has
cardinality

(2n
n

)
.

Proof.
This follows from the observation that D(Cm × Cn) has cardinality

(m+n
n

)
For n = 1 this holds since an m-element chain has m + 1 down-closed sets
Assuming the result holds for n, note that P = Cm × Cn+1 is the disjoint
union of Cm ×Cn and Cm, where we assume the additional m elements are
not below any of the elements of Cm × Cn

The number of downsets of P that contain an element a from the extra
chain Cm as a maximal element is given by

(k+n
n

)
where k is the number of

elements above a
Hence the total number of downsets of P is

∑m
k=0

(k+n
n

)
=
(m+n+1

n+1

)
.



Some References

H. Andreka, S. Givant, P. Jipsen, I. Nemeti, On Tarski’s axiomatic foundations of the
calculus of relations, to appear in Review of Symbolic Logic

N. Galatos and P. Jipsen, Relation algebras as expanded FL-algebras, Algebra Universalis,
69(1) 2013, 1–21

N. Galatos and P. Jipsen, Distributive residuated frames and generalized bunched implication
algebras, to appear in Algebra Universalis

N. Galatos, P. Jipsen, T. Kowalski, H Ono, Residuated Lattices: An Algebraic Glimpse at
Substructural Logics, No. 151 Studies in Logic and Foundations of Mathematics, Elsevier 2007

B. Jónsson, Varieties of relation algebras, Algebra Universalis, 15, 1982, 273–298

B. Jónsson and A. Tarski, Boolean algebras with operators, Part II, American Journal of

Mathematics, 74 (1952), 127–162



Thank You, Bjarni ! (July 1990)


