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Topological recognisers: BMs

A Boolean space with an internal monoid (BM, or BiM, for short) is a
pair (X ,M) where

• X is a Boolean space;

• M is a dense subspace of X equipped with a monoid structure;

• the biaction of M on itself extends to a biaction of M on X with
continuous components.

(injectivity assumption, in the general framework, has to be dropped)

β(A∗) X

A∗ M

τ
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First-order quantifiers

Some quantifiers we are interested in:

• existential quantifier ∃;

• modular quantifiers ∃p mod q. For w ∈ (A× 2)∗, w � ∃p mod qx .ψ(x)
iff there exist exactly p mod q positions in w for which the formula
ψ(x) is satisfied;

• semiring quantifiers ∃k,S , for (S ,+, ·, 0S , 1S) a semiring and k ∈ S .
If w ∈ (A× 2)∗,

w � ∃k,Sx .ψ(x) ⇔ 1S + · · ·+ 1S︸ ︷︷ ︸
m times

= k ,

where m is the number of positions in the word w that witness the
validity of ψ(x).
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Question: Suppose (X ,M) is a BM recognising the language Lψ(x).
How to construct a BM recognising LQx .ψ(x), for Q a certain (e.g.
modular or semiring) quantifier?

[Gehrke-Petrişan-R 2016]: for Q = ∃, take (VX × X ,PfM ×M),
where VX is the Vietoris space of X and PfM is the finite powerset
of M.

Hint for generalisation: PfM is the free join-semilattice (=module
over the two-element Boolean semiring) on M, and VX is the free
profinite join-semilattice on X . In fact, V is the profinite monad of Pf .
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Codensity and profinite monads

The codensity monad (Kock 60s) of a functor F :C→ D is the monad
on D ‘best approximating the monad that F would induce if it had a
left adjoint’.

C D ∀σ′:K ′ ◦ F ⇒ F ∃ a unique ε:K ′ ⇒ K s.t.

σ ◦ εF = σ′

D

F

F

σ

K

K ′

ε

The pair (K , σ) is called the codensity monad of F .
(Unit and multiplication of the monad by the universal property)
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Codensity and profinite monads

If C is (essentially) small and D is complete, then K :D→ D exists
and is computed by K (d) = limd→F (c) F (c).

Examples:

1. If F : Setfin ↪→ Set, then K = β: Set→ Set.

2. If F : sLatfin → BStone, then K = V: BStone→ BStone.

If V is the category of algebras for a monad T on Set, the profinite
monad of T is the codensity monad of Vfin → BStone (cf. item 2).

We will be interested in monads T that model a FO quantifier.
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Let T : Set→ Set be a monad and T̂ : BStone→ BStone its profinite
monad. Write V for the variety of T -algebras.

Lemma
For every Boolean space X , the following hold:

1. T |X | is dense in T̂X ;

2. T̂X is a profinite V-algebra;

3. if V is locally finite (and finitary) then T̂X is the free profinite
V-algebra on X .

Theorem
For a commutative and finitary monad T on Set, the assignment
(X ,M) 7→ (T̂X ,TM) yields a monad on BM.
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The semiring monads

Every semiring (S ,+, ·, 0, 1) induces a functor S: Set→ Set that
sends a set X to

SX := {f :X → S | f (x) = 0 for all but finitely many x ∈ X},

and a function ψ:X → Y to a function

Sψ:SX → SY ,
n∑

i=1

sixi 7→
n∑

i=1

siψ(xi ).

In fact, S is a monad on Set (the semiring monad associated to S)
whose algebras are modules over S .

Examples: (2, semilattices), (N,Ab. monoids), (Z,Ab. groups)
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Write Ŝ: BStone→ BStone for the profinite monad of S .

Theorem (Gehrke-Petrişan-R 2017)

Suppose Q is a quantifier modelled by a commutative semiring S, and
let S be the associated monad on the category of sets. If the language
Lψ(x) is recognised by a BM (X ,M), then the quantified language

LQx .ψ(x) is recognised by the BM (♦X ,♦M) := (ŜX × X ,SM ×M).

Corollary

If the language Lψ(x) is recognised by (X ,M), then the language
L∃x .ψ(x) is recognised by (VX × X ,PfM ×M).

Remark: the actions of the monoid ♦M on the Boolean space ♦X
can be derived by duality. For S = 2 and X finite, they resemble the
so-called Schützenberger product for monoids. Moreover,
φ: (β((A×2)∗), (A×2)∗)→ (X ,M)⇒ ♦φ: (β(A∗),A∗)→ (♦X ,♦M).

Luca Reggio Quantifiers on languages and codensity monads 9 / 14



Introduction Codensity monads Quantifiers Measures

A Reutenauer-type result

The BM (♦X ,♦M) is optimal from the point of view of recognition:

Theorem (Gehrke-Petrişan-R 2017)

The Boolean subalgebra closed under quotients of P(A∗) generated
by all languages recognised by some length-preserving morphism
(β(A∗),A∗)→ (♦X ,♦M) is the BA generated by

{L ⊆ A∗ | L is recognised by (X ,M)} ∪
{Q(L) ⊆ A∗ | L ⊆ (A× 2)∗ is recognised by (X ,M)}.
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Measures

For finite and commutative S , we can explicitly describe ŜX .

Lemma
Let X ∈ BStone and B its dual BA. The dual BA B̂ of ŜX is the
subalgebra of P(SX ) generated by the elements of the form

[L, k] := {f ∈ SX |
∑
L

f = k}, for L ∈ B, k ∈ S .

Every element of ŜX ∼= BA(B̂, 2) induces a function B → S :

(B̂
ϕ−→ 2) 7→ (µϕ: L 7→ unique k s.t. ϕ[L, k] = 1).

µϕ:B → S satisfies µϕ(0) = 0, and µϕ(K ∨ L) = µϕ(K ) + µϕ(L)
whenever K ∧ L = 0.
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Measures

Definition
Let X ∈ BStone and B its dual BA. An S-valued measure on X is a
function µ:B → S s.t.

1. µ(0) = 0;

2. µ(K ∨ L) = µ(K ) + µ(L) whenever K ∧ L = 0.

Equip the set of measures on X with the topology generated by

{µ:B → S | µ is a measure and µ(L) = k}, for L ∈ B, k ∈ S .

Theorem (Gehrke-Petrişan-R 2017)

For every X ∈ BStone, ϕ 7→ µϕ is a homeomorphism between ŜX
and the space of all S-valued measures on X .
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Density functions

Suppose S is an idempotent, commutative and finite semiring (hence
a semilattice with x ≤ y ⇔ x + y = y and ∨ = +). Every measure
µ:B → S induces a (density) function

fµ:X → S , x 7→ min {µ(L) | x ∈ L, L ∈ B}

which is continuous w.r.t. the down-set topology on S .

Theorem
For every X ∈ BStone, µ 7→ fµ is a homeomorphism between ŜX and
the space of all continuous functions from X to S↓.

Remark: for S = 2, this yields the usual representation of VX as the
family of continuous functions from X into the Sierpiński space.
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Thank you for your attention.
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