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Lattice-valued modal logics

Defined in terms of A-valued Kripke models for a lattice A, M = (W, R, e)
e W is a non-empty set
e Risafunctionfrom W x W to A

e ¢ is a function from F'rmg x W to A
The value of Oy at w is defined in terms of the lattice-order infimum of values

related to .
M is called crisp if the range of R is the {0, 1}-subalgebra of A. In crisp
models, we have

e(0p,w) = inf{e(p,u) ; Rwu}
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models, we have

e(0p,w) = inf{e(p,u) ; Rwu}
A bilattice is, roughly, an algebra with two lattice orders. The literature on
bilattice-valued modal logics (Odintsov and Wansing, 2010; Rivieccio et al.,

2017) considers languages where only one of the orders corresponds to a
modal operator.

So what happens if we add a second one??
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The Dunn-Belnap bilattice

Dunn (1966), Belnap (1977a, 1977b)
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The Dunn-Belnap bilattice

Dunn (1966), Belnap (1977a, 1977b)

e(p A Y) =inf< {e(p),e(¥)}
e(p V) =sup<, {e(p), e(¥)}

t if e(p)="F
e(~p) = {f ife(p) =t

e(¢)  otherwise

truth

information
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The Dunn-Belnap bilattice

Dunn (1966), Belnap (1977a, 1977b)

e(p A Y) =inf< {e(p),e(¥)}
e(p V) =sup<, {e(p), e(¥)}

t if e(p)="F
e(~p) = {f ife(p) =t

e(¢)  otherwise

truth

information

Arieli and Avron (1996), BL

otherwise

. _Jt if e(p,w) ¢ D
(e D) {6(1/1)

e(p DY) € Diff (e(p) € D = e(¢) € D).
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Some properties of DB

&%
Q.. . T
“:/90 “Classical negation

& If ~¢ := ¢ D f, then e(~p) € D iff
e(¢) € D; but, for example, not always
e(~~p) = e(p).

truth | n

information iff {¢,~—p} e D
iff {~p,—p} €D
iff {¢©,—-p} e D

iff {~p,~—¢p} € D

Expressing truth values e(p) =

S5 O Th oot

Filters
Both D and {xz ; ~—x € D} are prime filters wrt the truth order;
Both D and {z ; ~x € D} is a prime filter wrt the info order
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truth

A modal Dunn-Belnap logic

information

Odintsov and Wansing (2010), BK
Language {A, V,—, D, f, O},

DB-valued crisp Kripke models; and

-

e(Op, w) = inf<, {e(p,w’) ; Rww'
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A modal Dunn-Belnap logic

Odintsov and Wansing (2010), BK

Language {A,V,—, D, f, O},
truth guag { }

DB-valued crisp Kripke models; and
e(Op,w) = inf<, {e(p,w') ; Rww'}

information

Think of the states in a DB-valued crisp model as possibly incomplete and in-
consistent bodies of information within a network (graph). For example, agents
in a social network, interconnected databases etc. A modal logic over such
models expresses properties of and represents reasoning about such “infor-
mation networks”.
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Odintsov and Wansing (2010), BK

Language {A,V,—, D, f, O},
truth guag { }

DB-valued crisp Kripke models; and
e(Op,w) = inf<, {e(p,w') ; Rww'}

information

Think of the states in a DB-valued crisp model as possibly incomplete and in-
consistent bodies of information within a network (graph). For example, agents
in a social network, interconnected databases etc. A modal logic over such
models expresses properties of and represents reasoning about such “infor-
mation networks”.

Example: “Hereditarity” p D Op and —p D O-p.

The story invites to consider an information-order-based modality as well!
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Some properties of the bimodal logic



The information box — motivation

BBK extends the language of BK by a new
modality O, with the semantic clause

truth e(ip, w) = inf<, {e(p,w’) ; Rww'}

information

Sources. Graphs represent “sources of information”; the value of Op is the
value that can be assigned to p after considering all the sources (i.e. the info
on which all the sources agree).

Supervaluations. Graphs represent possibly incomplete or inconsistent val-
uations; Op is the “supervalue” of p, i.e. the “least” value on which all the ac-
cessible “supervaluations” agree (cf. p D Op and —p D O-p).
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Some properties of BBK

Oy DC O;¢is valid, but =O¢ DC —0;¢ is not.
In fact, =0, DC O;—¢p is valid.

AT Dy

——————— preserves validity.
ADT D O

Note: If n is added to the language, then the information modality is definable
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The axiom system BB

Implication axioms

D ¥ D)
(e2@>Dx)2>Ue>¢)D(pDx))
(¢D¥)D9) Dy

Lattice axioms

(pAY) Dpand(pAY) DY

D (pVvy)andy D (e V)

D W DpAY)
(p2x)2((¥2x)D(pVY D))
fDe

Negation axioms

© DC —p

@ D f

(e AY) OC (mp V 1)

(V) OC (mp A )

(¢ D) OC (p A —9)

Modal “filter” axioms
O~ OC ~=0p
U OC U
Normality rules

NSy
ABL D 8p

r
_ATDy rc, Fm
AD;T D O

Modus ponens

Y 9D
P
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Completeness (Prime theories and extension)

A nontrivial prime theory is any set of formulas I" such that

e T'cypiff Tk (Cky =T C, T, provable AT" D ¢)
o I'#£Fm

e pVyeliffpelory el

A pair of arbitrary sets of formulas (I", A) is an independent pair iff there are
no finite IV C I', A’ C A where

FAT D\ A
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A nontrivial prime theory is any set of formulas I" such that

e T'cypiff Tk (Cky =T C, T, provable AT" D ¢)
o I'#£Fm

e pVyeliffpelory el

A pair of arbitrary sets of formulas (I", A) is an independent pair iff there are
no finite IV C I', A’ C A where

FAT D\ A

Lemma 1 (Extension Lemma)

Let (I', A) be an independent pair. Then there is a nontrivial prime theory ¥
suchthatl' C Y and X N A = .

Proof. See (Restall, 2000), ch. 5.2. (- is “pair extension acceptable”.) O
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Completeness (Canonical model)

Let I’ = {¢ ; Oy € I'}. The canonical model is M, = (W,, R., e.) defined
as follows. W, is the set of all nontrivial prime theories; R.I'Y iff ' C ¥ and

if {¢,-p}CT

if {¢,~=p}CT
if {~p,—p}CT
if {~p,~mp} CT

ec(p,I) =

S —h &+ O

Note that p £ T iff ~p € T and e.(p,T') € D iff o € T.
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Completeness (Canonical model)

Let I’ = {¢ ; Oy € I'}. The canonical model is M, = (W,, R., e.) defined
as follows. W, is the set of all nontrivial prime theories; R.I'Y iff ' C ¥ and

b if {y,~p}CT
t if {p,~p} CT
ey =L el
fif {~p,~p}CT
n if {~p,~mpt CT
Note that p £ T iff ~p € T and e.(p,T') € D iff o € T.

Lemma 2 (Witness Lemma)
In M., Op €T <= (VX)(RTY = ¢ € X) and the same for O,.

Proof. Def. of M. and the Extension Lemma 1 (uses normality of OJ). O
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Canonical Filter Lemma

Lemma 3
Let X = {e.(¢,X) ; R.IX}. Then (Df = {z; f(z) € D})

1. inf, X € Diffe.(O0p,T") € D foro € {t,i}
2. inf, X € D~ iffe,(0¢p,T) € D™~
3. inf, X € D™ iffe.(0;0,T) € D™
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Canonical Filter Lemma

Lemma 3

Let X = {e.(¢, %) ; R.I'S}. Then (D/ = {z; f(x) € D})
1. inf, X € Diffe.(dp,I") € D foro € {t,i}

2. inf; X € D~ iffe.(0p,T") € D~

3. inf; X € D™ iffe.(0;¢,T) € D™

Proof.
inf;X € D(-) <— X C D" Filter properties
<— —p e Xfor RIY def. M,
<~ O-pel Witness Lemma
<— —-Opel Filter axiom
< e.(Op,T) € D def. M,
(]
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Completeness

Theorem 4

M. is a four-valued Kripke model.

Proof. It is sufficient to show that e.(0p, I") = inf{e.(p, X) ; R.I'X} and
that e.(0;p, ') = inf;{e.(p,2) ; R.ITX}.
¢ the Canonical Filter Lemma 3

e every truth value x € DB is “expressible” by means of D, D™ (e.g. x =t

iff x € Dandx ¢ D™)and by means of D, D~ (e.g. x = tiffx € D
andxz € D~7)
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Completeness

Theorem 4

M. is a four-valued Kripke model.

Proof. It is sufficient to show that e.(0p, I") = inf{e.(p, X) ; R.I'X} and
that e.(0;p, ') = inf;{e.(p,2) ; R.ITX}.
¢ the Canonical Filter Lemma 3

e every truth value x € DB is “expressible” by means of D, D™ (e.g. x =t
iff x € Dandx ¢ D™)and by means of D, D~ (e.g. x = tiffx € D
andxz € D~7)

Theorem 5
BBK = Thm(BBK).
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Generalizing the completeness argument

Assume that we have a matrix (A, D) such that f ¢ D and D>* is an D-
implication in the sense that v D® y € D iff (x € D onlyif y € D). Let
us assume that D is a complete prime filter.
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Assume that we have a matrix (A, D) such that f ¢ D and D>* is an D-
implication in the sense that v D® y € D iff (x € D onlyif y € D). Let
us assume that D is a complete prime filter.

Lemma 6 (Prime Extension Property)

If H is complete wrt - (defined over non-modal formulas), then every
independent 4-pair (T', A) is extendible to a non-trivial prime theory ¥ s.t.
' C ¥ and ¥ N A is empty.

Assume that every x € A is expressible by a unique set of unary operators
E(x) C U in the sense that, for every unary operator f € U (definable in the
language) including identity and for all y € A

x=y iff fly)e D < fe€ E(x)

Assume that D7 is a complete prime filter for all f € U.

12/14



Generalizing the completeness argument

Theorem 7

H plus the normality rule and the filter axioms f(Oy) DC O f(yp) is complete
wrt the class of A-valued crisp Kripke models.
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o ~f(p)eTforall f & E(x)

This is well-defined since U expresses A.

The Witness Lemma holds because of the normality rule and the PEP.

infX € Df «—= X C Df Filter properties
<— f(p) € Xfor RIS def. M./ H is A-compl.
<~ Of(p) el Witness Lemma
<~ f(Op)el Filter axiom
— e.(0p,T) € Df def. M,

The Modal Truth Lemma holds because U expresses A.
O
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Conclusion

e From the viewpoint of informal interpretation, it makes sense to study
bimodal bilattice-valued logic with a truth-order-based modality and an
information-order-based modality (more work on applications and
expressivity later)

e The completeness argument is standard, but it points to a potentially
interesting generalization (present and future work)
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Conclusion

e From the viewpoint of informal interpretation, it makes sense to study
bimodal bilattice-valued logic with a truth-order-based modality and an
information-order-based modality (more work on applications and
expressivity later)

e The completeness argument is standard, but it points to a potentially
interesting generalization (present and future work)

Thank you!
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Pair extension acceptability

ko

pAYFpand p A=
fokFYandplk x,thenp Y Ay
pFeVyandy oV
fokFxandy - x,thenp V- x
PN Y1V ) (P Ath1) V(o Atha)
fokFYandy F x,thenp - x

< back to slide 8
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