Finite model properties for many-valued modal logics.

Willem Conradie ¹ Wilmari Morton ¹ Claudette Robinson ²

¹Department of Pure and Applied Mathematics, University of Johannesburg.

²Department of Computer Science, University of the Witwatersrand.

Thursday, 29 June 2017 Prague, Czech Republic

An algebra $\mathbf{A} = (A, \land, \lor, \circ, \rightarrow, 0, 1)$ is a residuated lattice if, and only if:

- the reduct (A, ∧, ∨, 0, 1) is a bounded lattice with top element 1 and bottom element 0 (we will denote its order by ≤),
- the reduct (*A*, ∘, 1) is a commutative monoid with identity 1, and
- the fusion operation (also called strong conjunction) is residuated, with → being its right residual; that is, for all *a*, *b*, *c* ∈ *A*,

 $a \circ b \leq c \iff a \leq b \to c.$

An algebra $\mathbf{A} = (A, \land, \lor, \circ, \rightarrow, 0, 1)$ is a residuated lattice if, and only if:

- the reduct (A, ∧, ∨, 0, 1) is a bounded lattice with top element 1 and bottom element 0 (we will denote its order by ≤),
- the reduct (*A*, ∘, 1) is a commutative monoid with identity 1, and
- the fusion operation (also called strong conjunction) is residuated, with → being its right residual; that is, for all *a*, *b*, *c* ∈ *A*,

 $a \circ b \leq c \iff a \leq b \to c.$

An algebra $\mathbf{A} = (A, \land, \lor, \circ, \rightarrow, 0, 1)$ is a residuated lattice if, and only if:

- the reduct (A, ∧, ∨, 0, 1) is a bounded lattice with top element 1 and bottom element 0 (we will denote its order by ≤),
- the reduct (A, ∘, 1) is a commutative monoid with identity 1, and
- the fusion operation (also called strong conjunction) is residuated, with → being its right residual; that is, for all *a*, *b*, *c* ∈ *A*,

 $a \circ b \leq c \iff a \leq b \to c.$

An algebra $\mathbf{A} = (A, \land, \lor, \circ, \rightarrow, 0, 1)$ is a residuated lattice if, and only if:

- the reduct (A, ∧, ∨, 0, 1) is a bounded lattice with top element 1 and bottom element 0 (we will denote its order by ≤),
- the reduct (A, ∘, 1) is a commutative monoid with identity 1, and
- the fusion operation (also called strong conjunction) is residuated, with → being its right residual; that is, for all *a*, *b*, *c* ∈ *A*,

 $a \circ b \leq c \iff a \leq b \rightarrow c.$

An algebra $\mathbf{A} = (A, \land, \lor, \circ, \rightarrow, 0, 1)$ is a residuated lattice if, and only if:

- the reduct (A, ∧, ∨, 0, 1) is a bounded lattice with top element 1 and bottom element 0 (we will denote its order by ≤),
- the reduct (A, ∘, 1) is a commutative monoid with identity 1, and
- the fusion operation (also called strong conjunction) is residuated, with → being its right residual; that is, for all *a*, *b*, *c* ∈ *A*,

 $a \circ b \leq c \iff a \leq b \rightarrow c.$

We will require completeness in the residuated lattices.

The languages

Fix a residuated lattice $\mathbf{A} = (A, \land, \lor, \circ, \rightarrow, 0, 1)$ and a countably infinite set of propositional variables Φ .

The set of formulas Fm(A) of the many-valued propositional language over Φ and A is given by the following recursive definition:

 $\varphi := \mathbf{t} \mid \mathbf{p} \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \psi_1 \circ \psi_2 \mid \psi_1 \to \psi_2.$

Here $t \in A$ and $p \in \Phi$. We will refer to **A** as the truth-value space and the elements **t** as truth-value constants.

The languages

The set of formulas Fm(A) of the many-valued propositional language over Φ and A is given by the following recursive definition:

$\varphi := \mathbf{t} \mid \mathbf{p} \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \psi_1 \circ \psi_2 \mid \psi_1 \to \psi_2.$

Here $t \in A$ and $p \in \Phi$. We will refer to **A** as the truth-value space and the elements **t** as truth-value constants.

We define the set $Fm_{\Diamond,\Box}(A)$ of formulas of the basic many-valued modal language over Φ and A as follows:

 $\varphi := \mathbf{t} \mid \boldsymbol{\rho} \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \psi_1 \to \psi_2 \mid \Diamond \psi \mid \Box \psi.$

< ロ > < 同 > < 三 > <

The languages

The set of formulas Fm(A) of the many-valued propositional language over Φ and A is given by the following recursive definition:

 $\varphi := \mathbf{t} \mid \boldsymbol{\rho} \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \psi_1 \circ \psi_2 \mid \psi_1 \rightarrow \psi_2.$

Here $t \in A$ and $p \in \Phi$. We will refer to **A** as the truth-value space and the elements **t** as truth-value constants.

We define the set $Fm_{\Diamond,\Box}(A)$ of formulas of the basic many-valued modal language over Φ and A as follows:

 $\varphi := \mathbf{t} \mid \mathbf{p} \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \psi_1 \to \psi_2 \mid \diamondsuit \psi \mid \Box \psi.$

The subsets of formulas $Fm_{\Diamond}(\bm{A})$ and $Fm_{\Box}(\bm{A})$ are then defined in the obvious way.

Frames and models

Definition

A many-valued (Kripke) frame over **A** (**A**-frame) for the basic many-valued modal language is a triple $\mathfrak{F} = (W, D, B)$ with a nonempty universe W and many-valued accessibility relations such that $D: W \times W \to A$ and $B: W \times W \to A$.

Frames and models

Definition

A many-valued (Kripke) frame over **A** (**A**-frame) for the basic many-valued modal language is a triple $\mathfrak{F} = (W, D, B)$ with a nonempty universe W and many-valued accessibility relations such that $D: W \times W \to A$ and $B: W \times W \to A$.

Note that our two modalities will not be interdefinable, in general.

Frames and models

Definition

A many-valued (Kripke) frame over **A** (**A**-frame) for the basic many-valued modal language is a triple $\mathfrak{F} = (W, D, B)$ with a nonempty universe W and many-valued accessibility relations such that $D: W \times W \to A$ and $B: W \times W \to A$.

Note that our two modalities will not be interdefinable, in general.

Definition

A many-valued (Kripke) model over **A** (**A**-model) for the basic many-valued modal language is a pair $\mathfrak{M} = (\mathfrak{F}, V)$, where \mathfrak{F} is an **A**-frame and *V* is a map (called a valuation) such that *V*: PROP $\times W \rightarrow A$ and $V(\mathbf{t}, w) = t$ for all $w \in W$ and $t \in A$.

Semantics

The valuation can be extended to all formulas as follows:

$$V(\psi \land \varphi, w) = V(\psi, w) \land V(\varphi, w),$$

$$V(\psi \lor \varphi, w) = V(\psi, w) \lor V(\varphi, w),$$

$$V(\psi \circ \varphi, w) = V(\psi, w) \circ V(\varphi, w),$$

$$V(\psi \to \varphi, w) = V(\psi, w) \to V(\varphi, w),$$

$$V(\Diamond \psi, w) = \bigvee \{D(w, v) \circ V(\psi, v) \mid v \in W\} \text{ and}$$

$$V(\Box \psi, w) = \bigwedge \{B(w, v) \to V(\psi, v) \mid v \in W\}.$$

Semantics

The valuation can be extended to all formulas as follows:

$$V(\psi \land \varphi, w) = V(\psi, w) \land V(\varphi, w),$$

$$V(\psi \lor \varphi, w) = V(\psi, w) \lor V(\varphi, w),$$

$$V(\psi \circ \varphi, w) = V(\psi, w) \circ V(\varphi, w),$$

$$V(\psi \to \varphi, w) = V(\psi, w) \to V(\varphi, w),$$

$$V(\Diamond \psi, w) = \bigvee \{D(w, v) \circ V(\psi, v) \mid v \in W\} \text{ and }$$

$$V(\Box \psi, w) = \bigwedge \{B(w, v) \to V(\psi, v) \mid v \in W\}.$$

We know $V(\Diamond \psi, w)$ and $V(\Box \psi, w)$ will always exist in **A** because it is complete.

Let *a* ∈ *A*.

We say that φ is *a*-true in an **A**-model \mathfrak{M} at $w \in W$ (denoted $\mathfrak{M}, w \Vdash^{a} \varphi$), if $V(\varphi, w) \geq a$.

We say that φ is *a*-true in an **A**-model \mathfrak{M} at $w \in W$ (denoted $\mathfrak{M}, w \Vdash^a \varphi$), if $V(\varphi, w) \ge a$.

A formula φ is *a*-true in an **A**-model \mathfrak{M} (denoted $\mathfrak{M} \Vdash^{a} \varphi$), if $V(\varphi, w) \ge a$ for all $w \in W$.

We say that φ is *a*-true in an **A**-model \mathfrak{M} at $w \in W$ (denoted $\mathfrak{M}, w \Vdash^{a} \varphi$), if $V(\varphi, w) \geq a$.

A formula φ is *a*-true in an **A**-model \mathfrak{M} (denoted $\mathfrak{M} \Vdash^{a} \varphi$), if $V(\varphi, w) \geq a$ for all $w \in W$.

A formula φ is *a*-valid in an **A**-frame \mathfrak{F} at $w \in W$ (denoted $\mathfrak{F}, w \Vdash^a \varphi$), if $V(\varphi, w) \ge a$ for all valuations V on \mathfrak{F} .

We say that φ is *a*-true in an A-model \mathfrak{M} at $w \in W$ (denoted $\mathfrak{M}, w \Vdash^a \varphi$), if $V(\varphi, w) \ge a$.

A formula φ is *a*-true in an **A**-model \mathfrak{M} (denoted $\mathfrak{M} \Vdash^{a} \varphi$), if $V(\varphi, w) \geq a$ for all $w \in W$.

A formula φ is *a*-valid in an **A**-frame \mathfrak{F} at $w \in W$ (denoted $\mathfrak{F}, w \Vdash^a \varphi$), if $V(\varphi, w) \ge a$ for all valuations V on \mathfrak{F} .

Finally, we say φ is *a*-valid in an **A**-frame \mathfrak{F} (denoted $\mathfrak{F} \Vdash^a \varphi$), if $\mathfrak{F}, w \Vdash^a \varphi$ for all $w \in W$.

The non-modal logic of a residuated lattice

The non-modal logic of the many-valued propositional language over Φ and **A** will be denoted by $\Lambda(\mathbf{A})$ and is obtained by setting for all $\Gamma \cup {\varphi} \subseteq Fm(\mathbf{A})$,

 $\Gamma \Vdash_{\mathbf{A}} \varphi \text{ iff } \forall h \in \text{HOM}(\mathbf{Fm}(\mathbf{A}), \mathbf{A}), \text{ if } h[\Gamma] \subseteq \{1\}, \text{ then } h(\varphi) = 1.$

The non-modal logic of a residuated lattice

The non-modal logic of the many-valued propositional language over Φ and **A** will be denoted by $\Lambda(\mathbf{A})$ and is obtained by setting for all $\Gamma \cup {\varphi} \subseteq Fm(\mathbf{A})$,

 $\Gamma \Vdash_{\mathbf{A}} \varphi \text{ iff } \forall h \in \operatorname{HOM}(\mathbf{Fm}(\mathbf{A}), \mathbf{A}), \text{ if } h[\Gamma] \subseteq \{1\}, \text{ then } h(\varphi) = 1.$

If **A** is finite, then $\Lambda(\mathbf{A})$ is finitary.

The non-modal logic of a residuated lattice

The non-modal logic of the many-valued propositional language over Φ and **A** will be denoted by $\Lambda(\mathbf{A})$ and is obtained by setting for all $\Gamma \cup {\varphi} \subseteq Fm(\mathbf{A})$,

 $\Gamma \Vdash_{\mathbf{A}} \varphi \text{ iff } \forall h \in \text{HOM}(\mathbf{Fm}(\mathbf{A}), \mathbf{A}), \text{ if } h[\Gamma] \subseteq \{1\}, \text{ then } h(\varphi) = 1.$

If **A** is finite, then $\Lambda(\mathbf{A})$ is finitary.

Throughout this talk we will assume that we have a sound and complete axiomatization for $\Lambda(\mathbf{A})$.

In what follows, we restrict our attention to **A**-frames (W, D, B) where D = B = R.

Moreover, we will assume that **A** is a finite residuated lattice.

Let K(A) be a class of A-frames. We will denote the set $\{\psi \in Fm_{\diamond,\Box}(A) \mid K(A) \Vdash^1 \psi\}$ by $\Lambda_{K(A)}$.

Let K(A) be a class of A-frames. We will denote the set $\{\psi \in Fm_{\diamond,\Box}(A) \mid K(A) \Vdash^1 \psi\}$ by $\Lambda_{K(A)}$.

Let $Fr(\mathbf{A})$ be the class of all \mathbf{A} -frames (W, R). The (local) many-valued modal logic $\Lambda(\ell, Fr(\mathbf{A}))$ associated with \mathbf{A} and the class of \mathbf{A} -frames $Fr(\mathbf{A})$ is obtained by setting for all $\Gamma \cup \{\varphi\} \subseteq Fm_{\diamond,\Box}(\mathbf{A}),$

Let K(A) be a class of A-frames. We will denote the set $\{\psi \in Fm_{\diamond,\Box}(A) \mid K(A) \Vdash^1 \psi\}$ by $\Lambda_{K(A)}$.

Let $Fr(\mathbf{A})$ be the class of all \mathbf{A} -frames (W, R). The (local) many-valued modal logic $\Lambda(\ell, Fr(\mathbf{A}))$ associated with \mathbf{A} and the class of \mathbf{A} -frames $Fr(\mathbf{A})$ is obtained by setting for all $\Gamma \cup \{\varphi\} \subseteq Fm_{\diamond,\Box}(\mathbf{A}),$

 $\Gamma \Vdash_{\mathsf{Fr}(\mathbf{A})}^{\ell} \varphi$ iff for every **A**-model (W, R, V) over a frame (W, R)in $\mathsf{Fr}(\mathbf{A})$ and for every $w \in W$, it holds that if $V(\gamma, w) = 1$, for every $\gamma \in \Gamma$, then $V(\varphi, w) = 1$.

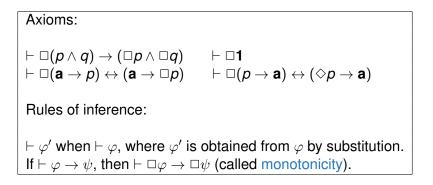
Many-valued modal logic sets

Definition

A many-valued modal logic set over **A** is any set $L(\mathbf{A})$ of formulas that contains all axioms for $\Lambda(\mathbf{A})$ and all axioms in the table on the next slide, and which is closed under the inference rules for $\Lambda(\mathbf{A})$ and the inference rules in the table.

The smallest many-valued modal logic set over \mathbf{A} will be denoted by $\mathbf{K}(\mathbf{A})$.

Many-valued modal logic sets (cont.)



Completeness of the basic many-valued modal logic when **A** *is finite*

Theorem

Let A be a finite residuated lattice. Then:

- 1. $\mathbf{K}(\mathbf{A}) = \Lambda_{Fr(\mathbf{A})}$.
- The logic ∧(ℓ, Fr(A)) is axiomatized by K(A) as a set of axioms and the rules for ∧(A).

Completeness of the basic many-valued modal logic when **A** *is finite*

Theorem

Let **A** be a finite residuated lattice. Then:

- 1. $\mathbf{K}(\mathbf{A}) = \Lambda_{Fr(\mathbf{A})}$.
- The logic Λ(ℓ, Fr(A)) is axiomatized by K(A) as a set of axioms and the rules for Λ(A).

Remark

Bou et. al. (2011) axiomatized the basic many-valued modal logic of all **A**-frames for the many-valued modal language containing only \Box .

$$\begin{split} \mathbf{T}(\mathbf{A}) &= \mathbf{K}(\mathbf{A}) \oplus \{p \to \Diamond p, \Box p \to p\} \\ \mathbf{D}(\mathbf{A}) &= \mathbf{K}(\mathbf{A}) \oplus \{\Box p \to \Diamond p\} \\ \mathbf{B}(\mathbf{A}) &= \mathbf{K}(\mathbf{A}) \oplus \{p \to \Box \Diamond p, \Diamond \Box p \to p\} \\ \mathbf{K4}(\mathbf{A}) &= \mathbf{K}(\mathbf{A}) \oplus \{\Diamond \Diamond p \to \Diamond p, \Box p \to \Box \Box p\} \\ \mathbf{S4}(\mathbf{A}) &= \mathbf{T}(\mathbf{A}) \oplus \{\Diamond \Diamond p \to \Diamond p, \Box p \to \Box \Box p\} \end{split}$$

Some extensions of K(A)

Equivalence classes

Fix a residuated lattice $\mathbf{A} = (A, \land, \lor, \circ, \rightarrow, 0, 1)$.

Equivalence classes

Recall that Σ is called subformula closed if, whenever $\varphi \in \Sigma$ and ψ is a subformula of φ , then $\psi \in \Sigma$.

Equivalence classes

Let $\mathfrak{M} = (W, D, B, V)$ be an **A**-model and Σ a subformula closed set of formulas. Let $\longleftrightarrow_{\Sigma}^{\mathbf{A}}$ be the relation on W defined by:

for
$$w, v \in W$$
 and $\varphi \in \Sigma$, $w \leftrightarrow \Sigma v$ if, and only if,
 $\mathfrak{M}, w \Vdash^a \varphi \iff \mathfrak{M}, v \Vdash^a \varphi$ for all $a \in \mathbf{A}$.

Equivalence classes

Let $\mathfrak{M} = (W, D, B, V)$ be an **A**-model and Σ a subformula closed set of formulas. Let $\longleftrightarrow_{\Sigma}^{\mathbf{A}}$ be the relation on *W* defined by:

for $w, v \in W$ and $\varphi \in \Sigma$, $w \leftrightarrow \sum_{\Sigma}^{A} v$ if, and only if, $\mathfrak{M}, w \Vdash^{a} \varphi \iff \mathfrak{M}, v \Vdash^{a} \varphi$ for all $a \in A$.

The relation $\leftrightarrow \Rightarrow \frac{A}{5}$ is clearly an equivalence relation.

Equivalence classes

Let $\mathfrak{M} = (W, D, B, V)$ be an **A**-model and Σ a subformula closed set of formulas. Let $\longleftrightarrow_{\Sigma}^{\mathbf{A}}$ be the relation on W defined by:

for $w, v \in W$ and $\varphi \in \Sigma$, $w \leftrightarrow \Sigma v$ if, and only if, $\mathfrak{M}, w \Vdash^{a} \varphi \iff \mathfrak{M}, v \Vdash^{a} \varphi$ for all $a \in \mathbf{A}$.

The relation $\longleftrightarrow_{\Sigma}^{\mathbf{A}}$ is clearly an equivalence relation.

We denote the equivalence class of $w \in W$ by [w].

Equivalence classes

Let $\mathfrak{M} = (W, D, B, V)$ be an **A**-model and Σ a subformula closed set of formulas. Let $\longleftrightarrow_{\Sigma}^{\mathbf{A}}$ be the relation on W defined by:

for $w, v \in W$ and $\varphi \in \Sigma$, $w \leftrightarrow \Sigma v$ if, and only if, $\mathfrak{M}, w \Vdash^{a} \varphi \iff \mathfrak{M}, v \Vdash^{a} \varphi$ for all $a \in \mathbf{A}$.

The relation $\longleftrightarrow_{\Sigma}^{\mathbf{A}}$ is clearly an equivalence relation.

We denote the equivalence class of $w \in W$ by [w].

Set
$$W_{\Sigma}^{\mathbf{A}} = \{ [w] \mid w \in W \}.$$

Definition

Let $a, b \in A$. Suppose $\mathfrak{M}_{f}^{(\Sigma, \mathbf{A})} = \left(W_{f}^{\mathbf{A}}, D_{f}^{(\Sigma, \mathbf{A})}, B_{f}^{(\Sigma, \mathbf{A})}, V_{\Sigma}^{\mathbf{A}}\right)$ is any model such that:

Definition

Let
$$a, b \in A$$
. Suppose $\mathfrak{M}_{f}^{(\Sigma, \mathbf{A})} = \left(W_{f}^{\mathbf{A}}, D_{f}^{(\Sigma, \mathbf{A})}, B_{f}^{(\Sigma, \mathbf{A})}, V_{\Sigma}^{\mathbf{A}} \right)$ is any model such that:

$$(W) W_f^{\mathsf{A}} = W_{\Sigma}^{\mathsf{A}}.$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ◆ ○ ● ◆ ○ ●

Definition

Let $a, b \in A$. Suppose $\mathfrak{M}_{f}^{(\Sigma, A)} = \left(W_{f}^{A}, D_{f}^{(\Sigma, A)}, B_{f}^{(\Sigma, A)}, V_{\Sigma}^{A}\right)$ is any model such that:

(*R*1) If
$$D(w, v) \ge a$$
, then $D_f^{(\Sigma, \mathbf{A})}([w], [v]) \ge a$.

(*R*2) If $D_f^{(\Sigma,\mathbf{A})}([w],[v]) \ge a$, then, for every $\Diamond \varphi \in \Sigma$, we have $\mathfrak{M}, w \Vdash^{a \circ b} \Diamond \varphi$ whenever $\mathfrak{M}, v \Vdash^{b} \varphi$.

Definition

Let $a, b \in A$. Suppose $\mathfrak{M}_{f}^{(\Sigma, \mathbf{A})} = \left(W_{f}^{\mathbf{A}}, D_{f}^{(\Sigma, \mathbf{A})}, B_{f}^{(\Sigma, \mathbf{A})}, V_{\Sigma}^{\mathbf{A}}\right)$ is any model such that:

(R3) If
$$B(w,v) \ge a$$
, then $B_f^{(\Sigma,\mathbf{A})}([w],[v]) \ge a$.

(*R*4) If $B_f^{(\Sigma, \mathbf{A})}([w], [v]) \ge a$, then, for every $\Box \varphi \in \Sigma$, we have $\mathfrak{M}, v \Vdash^{a \circ b} \varphi$ whenever $\mathfrak{M}, w \Vdash^{b} \Box \varphi$.

Definition

Let $a, b \in A$. Suppose $\mathfrak{M}_{f}^{(\Sigma, \mathsf{A})} = \left(W_{f}^{\mathsf{A}}, D_{f}^{(\Sigma, \mathsf{A})}, B_{f}^{(\Sigma, \mathsf{A})}, V_{\Sigma}^{\mathsf{A}} \right)$ is any model such that:

(V)
$$V_f^{\mathbf{A}}([w], p) = V(w, p)$$
 for all $p \in \Sigma$.

イロト イポト イヨト イヨト

Filtrations for many-valued Kripke models

Definition

Let $a, b \in A$. Suppose $\mathfrak{M}_{f}^{(\Sigma, \mathbf{A})} = \left(W_{f}^{\mathbf{A}}, D_{f}^{(\Sigma, \mathbf{A})}, B_{f}^{(\Sigma, \mathbf{A})}, V_{\Sigma}^{\mathbf{A}}\right)$ is any model such that:

(*W*)
$$W_f^{\mathbf{A}} = W_{\Sigma}^{\mathbf{A}}$$
.
(*R*1) If $D(w, v) \ge a$, then $D_f^{(\Sigma, \mathbf{A})}([w], [v]) \ge a$.
(*R*2) If $D_f^{(\Sigma, \mathbf{A})}([w], [v]) \ge a$, then, for every $\Diamond \varphi \in \Sigma$, we have
 $\mathfrak{M}, w \Vdash^{a \circ b} \Diamond \varphi$ whenever $\mathfrak{M}, v \Vdash^{b} \varphi$.
(*R*3) If $B(w, v) \ge a$, then $B_f^{(\Sigma, \mathbf{A})}([w], [v]) \ge a$.
(*R*4) If $B_f^{(\Sigma, \mathbf{A})}([w], [v]) \ge a$, then, for every $\Box \varphi \in \Sigma$, we have
 $\mathfrak{M}, v \Vdash^{a \circ b} \varphi$ whenever $\mathfrak{M}, w \Vdash^{b} \Box \varphi$.
(*V*) $V_f^{\mathbf{A}}([w], p) = V(w, p)$ for all $p \in \Sigma$.
Then $\mathfrak{M}_f^{(\Sigma, \mathbf{A})}$ is called a filtration of \mathfrak{M} through Σ over \mathbf{A} .

The many-valued filtration theorem

Theorem

Let $\mathfrak{M}_{f}^{(\Sigma, \mathbf{A})} = (W_{\Sigma}^{\mathbf{A}}, D_{f}^{(\Sigma, \mathbf{A})}, B_{f}^{(\Sigma, \mathbf{A})}, V_{\Sigma}^{\mathbf{A}})$ be a filtration of \mathfrak{M} through a subformula closed set Σ over \mathbf{A} . Then, for all formulas $\varphi \in \Sigma$, all states w in \mathfrak{M} and any truth value $a \neq 0$ in \mathbf{A} , we have that

$$\mathfrak{M}, \mathbf{w} \Vdash^{\mathbf{a}} \varphi \iff \mathfrak{M}_{f}^{(\Sigma, \mathbf{A})}, [\mathbf{w}] \Vdash^{\mathbf{a}} \varphi.$$

Moreover, if A and Σ are both finite, then so is $\mathfrak{M}_{f}^{(\Sigma, A)}$.

The smallest filtration

$$D_{s}^{(\Sigma, \mathsf{A})}([w], [v]) = \bigvee \left\{ D(w', v') \mid w' \in [w], v' \in [v] \right\}$$
$$B_{s}^{(\Sigma, \mathsf{A})}([w], [v]) = \bigvee \left\{ B(w', v') \mid w' \in [w], v' \in [v] \right\}$$

The smallest filtration

$$D_{s}^{(\Sigma,\mathbf{A})}([w],[v]) = \bigvee \left\{ D(w',v') \mid w' \in [w], v' \in [v] \right\}$$
$$B_{s}^{(\Sigma,\mathbf{A})}([w],[v]) = \bigvee \left\{ B(w',v') \mid w' \in [w], v' \in [v] \right\}$$

Proposition

Let Σ be a subformula closed set of formulas. and let $\mathfrak{M}_{c}^{(\Sigma,\mathsf{A})} =$ $(W_{\Sigma}^{A}, D_{S}^{(\Sigma,A)}, B_{S}^{(\Sigma,A)}, V_{\Sigma}^{A})$, where $D_{S}^{(\Sigma,A)}$ and $B_{S}^{(\Sigma,A)}$ are obtained as described above. Then $\mathfrak{M}_{s}^{(\Sigma, \mathbf{A})}$ is a filtration of \mathfrak{M} through Σ over **A**. Moreover, if $\mathfrak{M}_{t}^{(\Sigma,\mathbf{A})} = (W_{\Sigma}^{\mathbf{A}}, D_{t}^{(\Sigma,\mathbf{A})}, B_{t}^{(\Sigma,\mathbf{A})}, V_{\Sigma}^{\mathbf{A}})$ is any filtration of \mathfrak{M} through Σ over **A**, then for all $[w], [v] \in W_{\Sigma}^{\mathbf{A}}$, we have that $D_s^{(\Sigma, \mathbf{A})}([w], [v]) \leq D_t^{(\Sigma, \mathbf{A})}([w], [v])$ and $B_{s}^{(\Sigma,\mathbf{A})}([w],[v]) < B_{t}^{(\Sigma,\mathbf{A})}([w],[v]).$

The largest filtration

$$\begin{aligned} &D_{\ell}^{(\Sigma,\mathsf{A})}([w],[v]) = \bigwedge \left\{ V(\varphi,v) \to V(\Diamond \varphi,w) \mid \Diamond \varphi \in \Sigma \right\} \\ &B_{\ell}^{(\Sigma,\mathsf{A})}([w],[v]) = \bigwedge \left\{ V(\Box \varphi,w) \to V(\varphi,v) \mid \Box \varphi \in \Sigma \right\} \end{aligned}$$

The largest filtration

$$\begin{split} D_{\ell}^{(\Sigma,\mathsf{A})}([w],[v]) &= \bigwedge \left\{ V(\varphi,v) \to V(\Diamond \varphi,w) \mid \Diamond \varphi \in \Sigma \right\} \\ B_{\ell}^{(\Sigma,\mathsf{A})}([w],[v]) &= \bigwedge \left\{ V(\Box \varphi,w) \to V(\varphi,v) \mid \Box \varphi \in \Sigma \right\} \end{split}$$

Proposition

Let Σ be a subformula closed set of formulas, and let $\mathfrak{M}_{\ell}^{(\Sigma,\mathsf{A})} = (W_{\Sigma}^{\mathsf{A}}, D_{\ell}^{(\Sigma,\mathsf{A})}, B_{\ell}^{(\Sigma,\mathsf{A})}, V_{\Sigma}^{\mathsf{A}})$ where $D_{\ell}^{(\Sigma,\mathsf{A})}$ and $B_{\ell}^{(\Sigma,\mathsf{A})}$ are obtained as described above. Then $\mathfrak{M}_{\ell}^{(\Sigma,\mathsf{A})}$ is a filtration of \mathfrak{M} through Σ over A . Moreover, if $\mathfrak{M}_{f}^{(\Sigma,\mathsf{A})} = (W_{\Sigma}^{\mathsf{A}}, D_{f}^{(\Sigma,\mathsf{A})}, B_{f}^{(\Sigma,\mathsf{A})}, V_{\Sigma}^{\mathsf{A}})$ is any filtration of \mathfrak{M} through Σ over A , then for all $[w], [v] \in W_{\Sigma}^{\mathsf{A}}$, we have that $D_{\ell}^{(\Sigma,\mathsf{A})}([w], [v]) \ge D_{f}^{(\Sigma,\mathsf{A})}([w], [v])$ and $B_{\ell}^{\mathsf{A}}([w], [v]) \ge B_{f}^{\mathsf{A}}([w], [v])$.

Many-valued frame conditions

An **A**-frame $\mathfrak{F} = (W, D, B)$ is *a*-reflexive if $D(w, w) \ge a$ and $B(w, w) \ge a$ for all $w \in W$.

Many-valued frame conditions

An **A**-frame $\mathfrak{F} = (W, D, B)$ is *a*-serial if $\bigvee_{v \in W} D(u, v) \ge a$ and $\bigvee_{v \in W} B(u, v) \ge a$ for all $u \in W$.

Many-valued frame conditions

An **A**-frame $\mathfrak{F} = (W, D, B)$ is *a*-symmetric if, for all $u, v \in W$,

$$a \leq D(u, v) \rightarrow D(v, u)$$
 and $a \leq B(u, v) \rightarrow B(v, u)$.

< 🗇 > < 🖻 > <

Many-valued frame conditions

An **A**-frame $\mathfrak{F} = (W, D, B)$ is *a*-transitive if, for all $u, v, w \in W$, $a \leq D(u, v) \circ D(v, w) \rightarrow D(u, w)$ and

$$a \leq B(u, v) \circ B(v, w) \rightarrow B(u, w).$$

Frame conditions preserved by filtrations

Proposition

Let Σ be a subformula closed set of formulas, and let $\mathfrak{M}_{f}^{(\Sigma, \mathbf{A})} = (W_{\Sigma}^{\mathbf{A}}, \mathsf{D}_{f}^{(\Sigma, \mathbf{A})}, \mathsf{B}_{f}^{(\Sigma, \mathbf{A})}, V_{\Sigma}^{\mathbf{A}})$ be a filtration of $\mathfrak{M} = (W, D, B, V)$ through Σ over \mathbf{A} . Then we have the following for $R \in \{D, B\}$: 1. If R is a-reflexive, then so is $R_{f}^{(\Sigma, \mathbf{A})}$. 2. If R is a-serial, then so is $R_{f}^{(\Sigma, \mathbf{A})}$.

3. If R is a-symmetric, then so is $R_f^{(\Sigma, \mathbf{A})}$.

However, *a*-transitivity is not in general preserved.

Transitive filtration

$$D_t^{\mathbf{A}}([w], [v]) = \bigwedge \{ V(\varphi \lor \Diamond \varphi, v) \to V(\Diamond \varphi, w) \mid \Diamond \varphi \in \Sigma \}$$
$$B_t^{\mathbf{A}}([w], [v]) = \bigwedge \{ V(\Box \varphi, w) \to V(\varphi \land \Box \varphi, v) \mid \Box \varphi \in \Sigma \}$$

Transitive filtration

 $D_t^{\mathbf{A}}([w], [v]) = \bigwedge \{ V(\varphi \lor \Diamond \varphi, v) \to V(\Diamond \varphi, w) \mid \Diamond \varphi \in \Sigma \}$ $B_t^{\mathbf{A}}([w], [v]) = \bigwedge \{ V(\Box \varphi, w) \to V(\varphi \land \Box \varphi, v) \mid \Box \varphi \in \Sigma \}$

Proposition

Let Σ be a subformula closed set, $\mathfrak{M} = (W, D, B, V)$ an a-transitive **A**-model, and $\mathfrak{M}_t^{(\Sigma, \mathbf{A})} = (W_{\Sigma}^{\mathbf{A}}, \mathsf{D}_t^{(\Sigma, \mathbf{A})}, \mathsf{B}_t^{(\Sigma, \mathbf{A})}, V_{\Sigma}^{\mathbf{A}})$, where $D_t^{(\Sigma, \mathbf{A})}$ and $B_t^{(\Sigma, \mathbf{A})}$ are obtained as described above. Then $\mathfrak{M}_t^{(\Sigma, \mathbf{A})}$ is a filtration of \mathfrak{M} through Σ over **A**. Moreover, $\mathfrak{M}_t^{(\Sigma, \mathbf{A})}$ is a-transitive.

In what follows, we restrict our attention to **A**-frames (W, D, B) where D = B = R.

Moreover, we will assume that **A** is a finite Heyting algebra.

Lemma

The canonical models of **T**(**A**), **D**(**A**), **B**(**A**), **K4**(**A**) are 1-reflexive, 1-serial, 1-symmetric and 1-transitive, respectively.

Lemma

The canonical models of T(A), D(A), B(A), K4(A) are

1-reflexive, 1-serial, 1-symmetric and 1-transitive, respectively.

Theorem

T(A), D(A), B(A) and K4(A) are characterized by the classes of all finite 1-reflexive, 1-serial, 1-symmetric and 1-transitive A-frames, respectively. S4(A) is characterized by the class of all finite 1-reflexive and 1-transitive A-frames.

Fix a Heyting chain $\mathbf{A} = (A, \land, \lor, \rightarrow, 0, 1)$ and consider the many valued modal language containing only \Box .

Transitivity axiom:

Löb formula:

$\Box(\Box ho ightarrow ho) ightarrow\Box ho$	(gl)
---	---------------

Transitivity axiom:

$$\Box \rho \to \Box \Box \rho \tag{4}$$

Löb formula:

$$\Box(\Box \rho \to \rho) \to \Box \rho \tag{gl}$$

Let **GL**(**A**) be the logic obtained by adding **gl** and **4** as axioms to the axiomatization given by Bou et. al. (2011).

Transitivity axiom:

$$\Box \rho \to \Box \Box \rho \tag{4}$$

Löb formula:

$$\Box(\Box \rho \to \rho) \to \Box \rho \tag{(gl)}$$

Let **GL**(**A**) be the logic obtained by adding **gl** and **4** as axioms to the axiomatization given by Bou et. al. (2011).

Possible interpretation: Provability in a lattice (or poset) of logics, e.g. axiomatic extensions of Peano Arithmetic. (Analogous to Fitting's multiple expert semantics.)

A non-0 path in $\mathfrak{F} = (W, R)$ is a sequence $\langle w_0, w_1, \ldots \rangle$ such that $R(w_i, w_{i+1}) > 0$ for all $i \ge 0$.

Frames for **GL**(**A**)

A non-0 path in $\mathfrak{F} = (W, R)$ is a sequence $\langle w_0, w_1, \ldots \rangle$ such that $R(w_i, w_{i+1}) > 0$ for all $i \ge 0$.

Frames for **GL**(**A**)

A non-0 path in $\mathfrak{F} = (W, R)$ is a sequence $\langle w_0, w_1, \ldots \rangle$ such that $R(w_i, w_{i+1}) > 0$ for all $i \ge 0$.

Proposition

- $\mathfrak{F}, w \Vdash^1 \mathfrak{gl}$ if, and only if:
- 1. Fis 1-transitive, and
- 2. there are no infinite non-0 paths starting from w.

Frames for **GL**(**A**)

A non-0 path in $\mathfrak{F} = (W, R)$ is a sequence $\langle w_0, w_1, \ldots \rangle$ such that $R(w_i, w_{i+1}) > 0$ for all $i \ge 0$.

Proposition

- $\mathfrak{F}, w \Vdash^1 \mathfrak{gl}$ if, and only if:
- 1. \mathfrak{F} is 1-transitive, and
- 2. there are no infinite non-0 paths starting from w.

Lemma

Axiom 4 is canonical for 1-transitivity.

Finite model property for **GL**(**A**)

Theorem

GL(**A**) is determined by the class of finite 1-transitive **A**-frames, with no infinite non-0 paths.

Finite model property for **GL**(**A**)

Theorem

GL(**A**) is determined by the class of finite 1-transitive **A**-frames, with no infinite non-0 paths.

Proof sketch:

Soundness by lemmas above.

Finite model property for **GL**(**A**)

Theorem

GL(**A**) is determined by the class of finite 1-transitive **A**-frames, with no infinite non-0 paths.

Proof sketch:

Soundness by lemmas above. Suppose $\not\vdash_{\mathbf{GL}(\mathbf{A})} \varphi$.

Finite model property for **GL**(**A**)

Theorem

GL(**A**) is determined by the class of finite 1-transitive **A**-frames, with no infinite non-0 paths.

Proof sketch:

Soundness by lemmas above. Suppose $\not\vdash_{GL(A)} \varphi$. Then $V^{GL(A)}(\varphi, w) < 1$ for some w in the canonical model $\mathfrak{M}^{GL(A)}$ (Bou et. al.).

Finite model property for **GL**(**A**)

Theorem

GL(**A**) is determined by the class of finite 1-transitive **A**-frames, with no infinite non-0 paths.

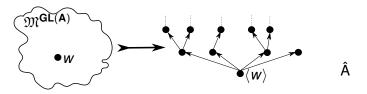
Proof sketch:

Soundness by lemmas above.

Suppose $\not\vdash_{\mathbf{GL}(\mathbf{A})} \varphi$.

Then $V^{GL(A)}(\varphi, w) < 1$ for some *w* in the canonical model $\mathfrak{M}^{GL(A)}$ (Bou et. al.).

Take transitive unravelling of $\mathfrak{M}^{\mathbf{GL}(\mathbf{A})}$ around *w*:



We obtain a model $\mathfrak{M} = (W, R, V)$, where:

- W is the set of all finite non-0 paths in $\mathfrak{M}^{\mathbf{GL}(\mathbf{A})}$ starting at w;
- for all $\sigma_1, \sigma_2 \in W$, we have $R(\sigma_1, \sigma_2) = R^{\mathsf{GL}(\mathsf{A})}(\ell(\sigma_1, \ell(\sigma_2)))$, where $\ell(\sigma)$ denotes the last element of σ , if $\sigma_2 = \langle \sigma_1, \sigma_3 \rangle$ for some non-0 path σ_3 , otherwise $R(\sigma_1, \sigma_2) = 0$;
- $V(p, \sigma) = V^{GL(A)}(p, \ell(\sigma))$ for all $p \in \Phi$ and $\sigma \in W$.

We obtain a model $\mathfrak{M} = (W, R, V)$, where:

- W is the set of all finite non-0 paths in $\mathfrak{M}^{\mathbf{GL}(\mathbf{A})}$ starting at w;
- for all $\sigma_1, \sigma_2 \in W$, we have $R(\sigma_1, \sigma_2) = R^{GL(A)}(\ell(\sigma_1, \ell(\sigma_2)))$, where $\ell(\sigma)$ denotes the last element of σ , if $\sigma_2 = \langle \sigma_1, \sigma_3 \rangle$ for some non-0 path σ_3 , otherwise $R(\sigma_1, \sigma_2) = 0$;

• $V(p, \sigma) = V^{GL(A)}(p, \ell(\sigma))$ for all $p \in \Phi$ and $\sigma \in W$.

We obtain a model $\mathfrak{M} = (W, R, V)$, where:

- W is the set of all finite non-0 paths in $\mathfrak{M}^{GL(A)}$ starting at w;
- for all $\sigma_1, \sigma_2 \in W$, we have $R(\sigma_1, \sigma_2) = R^{\mathsf{GL}(\mathsf{A})}(\ell(\sigma_1, \ell(\sigma_2)))$, where $\ell(\sigma)$ denotes the last element of σ , if $\sigma_2 = \langle \sigma_1, \sigma_3 \rangle$ for some non-0 path σ_3 , otherwise $R(\sigma_1, \sigma_2) = 0$;
- $V(p, \sigma) = V^{GL(A)}(p, \ell(\sigma))$ for all $p \in \Phi$ and $\sigma \in W$.

We obtain a model $\mathfrak{M} = (W, R, V)$, where:

- *W* is the set of all finite non-0 paths in $\mathfrak{M}^{GL(A)}$ starting at *w*;
- for all $\sigma_1, \sigma_2 \in W$, we have $R(\sigma_1, \sigma_2) = R^{\mathsf{GL}(\mathsf{A})}(\ell(\sigma_1, \ell(\sigma_2)))$, where $\ell(\sigma)$ denotes the last element of σ , if $\sigma_2 = \langle \sigma_1, \sigma_3 \rangle$ for some non-0 path σ_3 , otherwise $R(\sigma_1, \sigma_2) = 0$;
- $V(p, \sigma) = V^{GL(A)}(p, \ell(\sigma))$ for all $p \in \Phi$ and $\sigma \in W$.

We obtain a model $\mathfrak{M} = (W, R, V)$, where:

- W is the set of all finite non-0 paths in $\mathfrak{M}^{\mathbf{GL}(\mathbf{A})}$ starting at w;
- for all $\sigma_1, \sigma_2 \in W$, we have $R(\sigma_1, \sigma_2) = R^{\mathsf{GL}(\mathsf{A})}(\ell(\sigma_1, \ell(\sigma_2)))$, where $\ell(\sigma)$ denotes the last element of σ , if $\sigma_2 = \langle \sigma_1, \sigma_3 \rangle$ for some non-0 path σ_3 , otherwise $R(\sigma_1, \sigma_2) = 0$;

•
$$V(p, \sigma) = V^{GL(A)}(p, \ell(\sigma))$$
 for all $p \in \Phi$ and $\sigma \in W$.

Lemma

For all formulas ψ and all $\sigma \in W$, we have $V(\psi, \sigma) = V^{GL(A)}(\psi, \ell(\sigma))$. Moreover, \mathfrak{M} is 1-transitive.

We obtain a model $\mathfrak{M} = (W, R, V)$, where:

- W is the set of all finite non-0 paths in $\mathfrak{M}^{GL(A)}$ starting at w;
- for all $\sigma_1, \sigma_2 \in W$, we have $R(\sigma_1, \sigma_2) = R^{\mathsf{GL}(\mathsf{A})}(\ell(\sigma_1, \ell(\sigma_2)))$, where $\ell(\sigma)$ denotes the last element of σ , if $\sigma_2 = \langle \sigma_1, \sigma_3 \rangle$ for some non-0 path σ_3 , otherwise $R(\sigma_1, \sigma_2) = 0$;

•
$$V(p, \sigma) = V^{GL(A)}(p, \ell(\sigma))$$
 for all $p \in \Phi$ and $\sigma \in W$.

Lemma

For all formulas ψ and all $\sigma \in W$, we have $V(\psi, \sigma) = V^{GL(A)}(\psi, \ell(\sigma))$. Moreover, \mathfrak{M} is 1-transitive.

$$\therefore V(arphi, \langle \pmb{w}
angle) = V^{\mathsf{GL}(\mathbf{A})}(arphi, \pmb{w}) < 1 ext{ and } \mathfrak{M} \Vdash^1 \mathbf{gl}$$

Construct a sequence of models $\mathfrak{M}_1, \mathfrak{M}_2, \ldots$ such that for all $i \ge 1, \mathfrak{M}_i$ is a submodel of \mathfrak{M} .

Construct a sequence of models $\mathfrak{M}_1, \mathfrak{M}_2, \ldots$ such that for all $i \geq 1, \mathfrak{M}_i$ is a submodel of \mathfrak{M} . Set $W_1 = \{\langle w \rangle\}$.

Construct a sequence of models $\mathfrak{M}_1, \mathfrak{M}_2, \ldots$ such that for all $i \geq 1, \mathfrak{M}_i$ is a submodel of \mathfrak{M} . Set $W_1 = \{\langle w \rangle\}$. Defect of $v \in W_i$: formula $\Box \psi \in SubFml(\varphi)$ such that $V(\Box \psi, v) = \beta < 1$ and there is no $u \in W_i$ such that $R(v, u) \rightarrow V(\psi, u) = \beta$.

Construct a sequence of models $\mathfrak{M}_1, \mathfrak{M}_2, \ldots$ such that for all $i \ge 1, \mathfrak{M}_i$ is a submodel of \mathfrak{M} . Set $W_1 = \{\langle w \rangle\}$. Defect of $v \in W_i$: formula $\Box \psi \in SubFml(\varphi)$ such that $V(\Box \psi, v) = \beta < 1$ and there is no $u \in W_i$ such that $R(v, u) \rightarrow V(\psi, u) = \beta$. Repair defects using:

Lemma

Let $\mathfrak{N} = (X, S, U)$ be an \mathfrak{A} -model, and suppose $\mathfrak{N} \Vdash^1 \mathbf{gl}$ and $v \in X$. If $U(\Box \psi, v) = \beta < 1$, then there is a state $u \in X$ such that $S(v, u) \rightarrow U(\psi, u) = \beta$ and $U(\Box \psi, u) > \beta$, and moreover, $u \neq v$.

Construct a sequence of models $\mathfrak{M}_1, \mathfrak{M}_2, \ldots$ such that for all $i \geq 1, \mathfrak{M}_i$ is a submodel of \mathfrak{M} . Set $W_1 = \{\langle w \rangle\}$. Defect of $v \in W_i$: formula $\Box \psi \in SubFml(\varphi)$ such that $V(\Box \psi, v) = \beta < 1$ and there is no $u \in W_i$ such that $R(v, u) \rightarrow V(\psi, u) = \beta$. Repair defects using:

Lemma

Let $\mathfrak{N} = (X, S, U)$ be an \mathfrak{A} -model, and suppose $\mathfrak{N} \Vdash^1 \mathbf{gl}$ and $v \in X$. If $U(\Box \psi, v) = \beta < 1$, then there is a state $u \in X$ such that $S(v, u) \rightarrow U(\psi, u) = \beta$ and $U(\Box \psi, u) > \beta$, and moreover, $u \neq v$.

$$v \quad \bigoplus_{\substack{u \in U} \\ \forall \psi > \beta, \psi < \beta} R(w, v) = \beta$$

Claim

The construction terminates, having produced a finite model \mathfrak{M}_n in which no point has a defect.

Claim

The construction terminates, having produced a finite model \mathfrak{M}_n in which no point has a defect.

Claim

 $V_n(\psi, \mathbf{v}) = V(\psi, \mathbf{v})$, for each formula $\psi \in SubFml(\varphi)$ and point $\mathbf{v} \in W_n$.

References

[Bou et. al.] On the minimum many-valued modal logic over a finite residuated lattice, Journal of Logic and Computation, 21:739–790, (2011).
[M. Fitting] How True It Is = Who Says It's True, Studia Logica, 91(3):335-366, (2009).

Thank you!

