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Unifiers e: Fm — {1, T} are called ground unifiers.

Unification is filtering if, for every two unifiers 7, there is a €
more general then each of 7,0, that is 7,0 < ¢ (Ghilardi-Sacchetti)

Examples: L - filtering iff KC C L (WD, split), NExtS4.2 (Gh-S)
A unifier € is said to be projective for A in L (Ghilardi 99) if

At x ¢+ e(x), for each x € VarA,

hence Al B <+ £(B), for each B; A is then a projective formula.

A logic L has projective unification if each unifiable formula has a
projective unifier. ~ Any projective unifier is a mgu.
Recognizing Admissible Rules in INT, K4, S4, GL (Ghilardi 99-02)

EXAM. Classical PC: ea(p) = (wAV p) A(AV 7(p)), T is a ground
unifier for A, so called Léwenheim substitution (reproductive solut.)
Discriminator var., Modal S5, NExt S4.3 (DW), unitar not proj KC



Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution 7:  7(A) €L = 7(B) €L,



Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution 7:  7(A) € L = 7(B) € L,
ris derivable in L, if AF_ B.



Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution 7:  7(A) € L = 7(B) € L,
ris derivable in L, if AF_ B.

-A— B VB
EX. the Harrop rule CAS BY) \/1(—|A 2_> B) is admissible in INT

A logic L is Structurally Complete, SC, if every admissible rule in L
is also derivable in L; (Class PC, LC, Int™”, Medvedev L.)



Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution 7:  7(A) € L = 7(B) € L,
ris derivable in L, if AF_ B.

-A— B VB
EX. the Harrop rule CAS BY) \/1(—|A 2_> B) is admissible in INT

A logic L is Structurally Complete, SC, if every admissible rule in L
is also derivable in L; (Class PC, LC, Int™”, Medvedev L.)

r . A/B is passive in L, if for every substitution 7:
T(A) € L, i.e. the premise is not unifiable in L.



Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution 7:  7(A) € L = 7(B) € L,
ris derivable in L, if AF_ B.

-A— B VB
EX. the Harrop rule CAS BY) \/1(—|A 2_> B) is admissible in INT

A logic L is Structurally Complete, SC, if every admissible rule in L
is also derivable in L; (Class PC, LC, Int™”, Medvedev L.)

r . A/B is passive in L, if for every substitution 7:
T(A) € L, i.e. the premise is not unifiable in L.

EXAMPLE P, : Op A O—p/L is passive in S4 and extensions,



Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution 7:  7(A) € L = 7(B) € L,
ris derivable in L, if AF_ B.

-A— B VB

i issible in INT
(~A > BV (-A  By) is admissible in

EX. the Harrop rule

A logic L is Structurally Complete, SC, if every admissible rule in L
is also derivable in L; (Class PC, LC, Int™”, Medvedev L.)

r . A/B is passive in L, if for every substitution 7:
T(A) € L, i.e. the premise is not unifiable in L.

EXAMPLE P, : Op A O—p/L is passive in S4 and extensions,
L is Almost Structurally Complete, ASC, if every admissible rule

which is not passive in L is derivable in L; admissible rules are
either derivable or passive. (NExt S4.3, t,),



Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution 7:  7(A) €L = 7(B) €L,
ris derivable in L, if AF_ B.

-A— B VB

i issible in INT
(~A > BV (-A  By) is admissible in

EX. the Harrop rule

A logic L is Structurally Complete, SC, if every admissible rule in L
is also derivable in L; (Class PC, LC, Int™”, Medvedev L.)

r . A/B is passive in L, if for every substitution 7:
T(A) € L, i.e. the premise is not unifiable in L.

EXAMPLE P, : Op A O—p/L is passive in S4 and extensions,

L is Almost Structurally Complete, ASC, if every admissible rule
which is not passive in L is derivable in L; admissible rules are
either derivable or passive. (NExt S4.3, t,),

FACT: L has projective unification = L is (A)SC,



Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution 7:  7(A) €L = 7(B) €L,
ris derivable in L, if AF_ B.

-A— B VB

i issible in INT
(~A > BV (-A  By) is admissible in

EX. the Harrop rule

A logic L is Structurally Complete, SC, if every admissible rule in L
is also derivable in L; (Class PC, LC, Int™”, Medvedev L.)

r . A/B is passive in L, if for every substitution 7:
T(A) € L, i.e. the premise is not unifiable in L.

EXAMPLE P, : Op A O—p/L is passive in S4 and extensions,

L is Almost Structurally Complete, ASC, if every admissible rule
which is not passive in L is derivable in L; admissible rules are
either derivable or passive. (NExt S4.3, t,),

FACT: L has projective unification = L is (A)SC,






1-st order language for intuitionistic

We consider a first-order (or predicate) intuitionistic language
without function letters.

free individual variables: a1, ap, a3, ...

bound individual variables:  x1,x, x3, ...

predicate variables: Py, P>, Ps, ...



1-st order language for intuitionistic logic

We consider a first-order (or predicate) intuitionistic language
without function letters.

free individual variables: a1, ap, a3, ...

bound individual variables:  x1,x, x3, ...

predicate variables: Py, P>, Ps, ...
0-ary predicate variables are identified with propositional variables.
Basic logical symbols: 1, — A, V,V,d.



1-st order language for intuitionistic logic

We consider a first-order (or predicate) intuitionistic language
without function letters.

free individual variables: a1, ap, a3, ...

bound individual variables:  x1,x, x3, ...

predicate variables: Py, P>, Ps, ...
0-ary predicate variables are identified with propositional variables.
Basic logical symbols: 1, —, A, V,V,d. Def. as usually: +»,—, T.



1-st order language for intuitionistic logic

We consider a first-order (or predicate) intuitionistic language
without function letters.

free individual variables: a1, ap, a3, ...

bound individual variables:  x1,x, x3, ...

predicate variables: Py, P>, Ps, ...
0-ary predicate variables are identified with propositional variables.
Basic logical symbols: 1, —, A, V,V,d. Def. as usually: +»,—, T.

g-Fm denotes the set of all quasi-formulas, (Fm - formulas).
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Unification - as in propositional case: ¢ is a L-unifier if - (A) etc
now: Unifiable # Consistent (prop. int. |. Unifiable = Consistent)

Corollary

For each consistent superintuitionistic predicate logic L and a for A:
(i) A is L-unifiable iff ;

(ii) there is a ground unifier for A in L iff;

(i) A is valid in a classical 1st-order model with 1-elem. universe.

Unifiability in superintuitionistic predicate logics is absolute - it
does not depend on the logic and decidable - it reduces to
satisfiability in classical propositional log.

Non-unifiable formulas using {Px, ..., P,} have an ,,upper bound":
- ((_\Vyl Py (X1) A=V, =P (X1)) Ve - -V (=, P,,(Y,,)/\—'V;n—\Pn(Yn))).

Example: Non-unifiable but Consistent (1 predicate variable P):
3= P(x) A 3xP(x), 3x=P(x) A ==3xP(x), =VxP(x) A =—=3xP(x),
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Basis for (Admissible) Passive Rules

The rule A/B is called passive in L, if A is not unifiable in L.
Passive rules are admissible in each logic L.
PY is an infinite family of inferential rules consisting of:

—VzP(Z) A Vz-P(2)
J_ )

Theorem

All passive rules are consequences, in Q-INT, of PV,
which means that all passive rules are derivable in the extension of
Q-INT with the rules PY.
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SC - ASC in superintuitionistic predicate logics

Let L be a structurally complete superintuitionistic predicate logic.
Since the rules PV are admissible (passive) they are derivable:

Theorem

If PY are derivable rules for a logic L, then
L+ 3xP(X) — =—VxP(X) and hence each Kripke frame for L has
constant domain with one-element universe.

In one-element models the quantifiers collapse: V A(x) = 34A(x)
Corollary

If L is a Kripke complete and structurally complete
superintuitionistic predicate logic, then L is (is equivalent to) a
propositional logic. No "nontrivial” intermediate predicate logic,
including Q—CL, is structurally complete.

Structural completeness, SC, is too strong for predicate logics.
It should be replaced by Almost SC, ASC , which is more suitable
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Projective formulas and Harrop formulas

A formula A is L-projective in a superintuitionistic predicate logic L
if there is a substitution £ (for predicate variables) called a
projective unifier for A, such that -, ¢(A) and

L A= Vo Ve ((Pi(x1, - - - xk)) <> Pj(x, ..., xx)) for each pr.v.P;.

hence -, A — (¢(B) «+» B), for each B.
FACT: Projective unification is preserved by extensions.

Harrop g-formulas g-Fmy (Harrop formulas Fmy) are defined by:
1. all elementary g-formulas (including L) are Harrop g-formulas;
2. if A B € g-Fmy, then AN B € g-Fmy;

3. if B€ g-Fmy, then A — B € g-Fmy;

4. if B € g-Fmy, then V,.B € q-Fmy.

Neither disjunction nor existential g-formula is a Harrop formula.
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Projective unification and Harrop formulas

Theorem
If A is a unifiable Harrop formula then it is projective in Q—INT.
If 9 is its ground unifier then € defines its projective unifier:

= { AP, i ARE) =T
(Pi(x)) = { AR A= Fe), TEEE) = L

Corollary

Any unifiable Harrop formula is projective in any superintuitionistic
predicate logic.

Since each {—, A, L,V} formula is a Harrop formula, we get
Corollary

Any unifiable formula in {—, A\, L,V} is projective in (the fragment
{—=, A, L,V} of) Q-INT.
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Rules admissible in superintuitionistic logics

The rule
-A — 3,C(x)

I (-A — C(x))

is NOT admissible in the superintuitionistic predicate logic given
by the frame 1, 2

0
—A = =—3,P(x) A ==3x=P(x) (a non-unifiable Harrop formula)
and C(x) = P(x); moreover Dy = D> = {0} and D; = N
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Rules admissible in all superintuitionistic logics

The following rules are admissible in every superintuitionistic
predicate logic:

—Vx(A(x) V 2AKX)) — B1 V B
(== (A(x) V =A(x)) — B1) V (—Vx(A(x) V =A(x)) — Bo)

=V (A(x) V 2A(x)) — 3xC(x)
I (=Y (A(x) V =A(x)) — C(x))
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Logics with Projective Unification

Theorem

The following conditions are equivalent

(i) L enjoys projective unification;

(i) P.Q — LC C L, where P := 3,(3xA(x) — A(x)) Plato’s law;
(iii) each formula is (L-equivalent to) a Harrop's one

(iv) each formula is L-equivalent to a formula in {—, L, A, V}.

Definitions (valid in P.Q-LC)
AVB:=((A— B)—=B)A((B— A) = A);
I A(X) == Y (Yy (A(y) = A(x)) = A(x)).

Moreover, if we extend the {—, A, L,V} fragment of Q-INT with
the above definitions, we obtain P.Q-LC.

Corollary

P.Q-LC is the least predicate logic in which AV B and 3,A(x)
are defined in {—, A\, L,V} (or are Harrop's).
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P.Q—-LC

Corollary

Every superintuitionistic predicate logic extending P.Q-LC is
almost structurally complete.

Theorem

P is valid on a rooted frame § =< W,<,D > ifand only if §
has a constant domain and one of the following holds

(1) the domain of § is one-element;

(2) the domain of § is finite and < is a linear order on W;

(3) (the domain of § is infinite and) < is a well-order on W.

Corollaries: Q—-INT, CD.Q-INT, Q-LC, CD.Q-LC, and some other
logics are Kripke incomplete
It might suggest that CD € P.Q — LC, but CD ¢ P.Q — LC.

Corollary

The logic P.Q-LC is Kripke incomplete.
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We develop unification types for superintutionistic predicate logics.
Standard definitions of the types: 1,w, oo, 0 are introduced but if
one tries to follow the results on unification types in propositional
logics, despite some similarities, the results are different: the
unification type of Q-L is usually "more complicated” then the
unification type of the propositional logic L.

Unification in L is unitary (type is 1) if the set of unifiers of any
unifiable formula A contains a greatest, w.r.t =<, element of A, an
mgu of A). Unification in L is finitary (type is w), if it is not 1 but
there is finitely many =<-maximal unifiers for each unifiable A and
each unifier for A is bounded by a maximal one. Unification in L is
infinitary (type is oo ) if it is not 1, nor w, and each L-unifier of A
is bounded by a maximal one. Unification in L is nulary (type is 0 )
if it is neither 1, nor w, nor oo.

Corollary

Unification in P.Q-LC and all its extensions is unitary.
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Filtering unification.

Unification in L is said to be filtering if given two unifiers for any

formula A one can find a unifier that is more general than both of
them. If unification is filtering, then every unifiable formula either
has an mgu (unific - unitary) or no basis of unifiers exists (nullary)

Theorem
Unification in L is filtering iff Q-KC C L.
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Coniecture: some oredicate locics have infinitarv unification



Thank you for your attention !
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Unification in Predicate Modal Logics

Theorem

The rules Py3 :

QAN O-A OF,A(2) A O, —A(z) OFuTvA(u,v) AOTu3v—A(u, v)
T , T ) T e

form a basis for all passive rules over Q-S4 and its extensions. No
sublogic of Q-CL is structurally complete (too strong property).



Projective fromulas in Predicate Modal Logics

A unifier € for predicate variables is projective for a formula A (or
formula A is projective) in a logic L if

F OA = Vi -V (e(Pi(x1, - .-, xk)) <> Pi(x, ..., xk)), for each P;.

Theorem

For any L-projective formula A and any formulas Bi, B>, 3, C(x),
(i) if Fi A— OBy Vv OBy, then - O(OA — By) vVIO(OA — By);
(i) if Fp A— 3,0C(x), then F; 3,0(0A — C(x)).

the disjunction property (DP): ) OBy VOB = | By, or b, Bs.
the existence property (EP): b 3,0C(x) = F, C(t), for some
term t (free variable)

Rasiowa-Sikorski: Q-S4 enjoys (DP) and (EP);



Projective fromulas in Predicate Modal Logics

Corollary

For L with (DP) and (EP), any L-projective A, any By, By, 35 C(x):
(i) if |_L A— DBl \/l:le, then |_L (DA — Bl) or l_L (DA — 82);
(i) if L A— 3,0C(x), then -, OA — C(t) for some t.

Formulas which are not projective (in Q-S4):
- any [1B; V B, which does not reduce to any its disjunct, or
- any 3,00C(x) which does not collapse to any its instance JC(t).



Projective unification, ASC in Predicate Modal Logics

Corollary

If L enjoys projective unification, then P.Q-S4.3C L, where P :
3,0(30P(x) — P(x)).

(The converse - if = is in the language).

Q-S5 has projective unification.

P.Q-S4.3 is Kripke incomplete. BF :V,0JA — OOV, A ¢ P.Q-54.3;
- P ¢ BF.Q-S4.3 and .3 ¢ P.Q-S5.4.

Corollary

If L has projective unification, then L is Almost Structurally
Complete (ASC).
Q-S5 is ASC.



Filtering unification in Predicate Modal Logics

Let OTA=AAOAand O0TA= AV QA.
Ghilardi and Sacchetti (JSL68,2004): For L a prop. modal logic L
C K4, unification in L is filtering iff : 27 : OTOTA — OTOTA.

Theorem

Let L be a predicate modal logics extending Q—K4. Unification in
L is filtering iff L contains 27 : OTOTA — OTOTA.

Corollary

(i) For every predicate modal logic L constaining Q-K4

if2t . OTOYA —OYOtA isin L, then unification in L is
unitary or nullary. Moreover, if L enjoys unitary unification, then
OTOTA —-OT0TAisinL, ie. Q-K4.2TC L.

(ii) For every predicate modal logic L containing Q-S4

if2: OQUOA — OOQA is in L, then unification in L is unitary or
nullary. Moreover, if L enjoys unitary unification, then

OOA — OOA isin L, i.e. Q-S4.2C L.



Unification types in Predicate Modal Logics

a predicate modal logic L constaining Q-S4 have the weak
existence property, (WEP), if 3,00A(x) € L implies

OA(t1) vV --- VOA(ts) € L, for some terms ti, ..., ty.

Theorem

If a modal predicate logic L enjoys (WEP), then unification in L is

neither finitary, nor unitary.

Corollary

Unification in Q-54.3 and in Q-5S4.2 is nullary.

In contrast to S4.3 unification in some extensions of Q-54.3 can
be unitary or nullary.

Corollary

The unification type of Q-K4 and Q-S4 is either 0 or cc.



