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Overview

• Unification, unifiers and projective unifiers in Logic

• 1st-order Unifiability, Basis for Passive Rules,

• Applications :
• Constructive aspects: ∨ and ∃, projective formulas and Harrop

formulas,
• Admissible Rules, ASC (Almost Struct. Complete)

• P.Q-LC: Gödel - Dummett logic (plus Plato’s law) the least
logic with projective unification; Definability of ∨ and ∃, ASC

• L has filtering unification iff L extends Q-KC (weak excl. mid);

• unification Q-KC, Q-LC nullary, Q-INT, CD.Q-INT: 0 or ∞
• Unification in modal prediacte logic (summary)
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Unification. Unifiers, mgu

A substitution ε is called a unifier for a formula A in a logic L if

`L ε(A) (or equivalently if ε(A) ∈ L)

a formula A is then called unifiable.

σ is more general then τ , τ � σ, if:
`L ε ◦ σ ↔ τ , for some substitution ε.
mgu - a most general unifier, a unifier more general then any unifier

Unification in L is unitary, 1, if every unifiable formula has a mgu.
Unification in L is nullary, 0, if for some unifiable formula a
�-maximal unfier does not exsist, other types:
finitary, ω, infinitary, ∞, depend on no. of �-maximal unfiers.

EXAMP.: unitary: Classical PC; LC = INT + (A→ B) ∨ (B → A)
- Gödel -Dummett logic; KC = INT + (¬A ∨ ¬¬A) (Ghilardi),
ω, not unitary: INT, K4, S4, GL, Grz,.., (Ghilardi),
0: some extensions of KC (Ghilardi), modal l. K (Jěrabek).
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Other kinds of unification. Projective unifiers

Unifiers ε : Fm→ {⊥,>} are called ground unifiers.

Unification is filtering if, for every two unifiers τ, σ there is a ε
more general then each of τ, σ, that is τ, σ � ε (Ghilardi-Sacchetti)

Examples: L - filtering iff KC ⊆ L (WD, split), NExtS4.2 (Gh-S)

A unifier ε is said to be projective for A in L (Ghilardi 99) if

A `L x ↔ ε(x), for each x ∈ VarA,

hence A `L B ↔ ε(B), for each B; A is then a projective formula.

A logic L has projective unification if each unifiable formula has a
projective unifier. Any projective unifier is a mgu.
Recognizing Admissible Rules in INT, K4, S4, GL (Ghilardi 99-02)

EXAM. Classical PC: εA(p) = (¬A∨ p)∧ (A∨ τ(p)), τ is a ground
unifier for A, so called Löwenheim substitution (reproductive solut.)

Discriminator var., Modal S5, NExt S4.3 (DW), unitar not proj KC
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Applications: Admissible rules, (A)SC

A schematic rule r : A/B is admissible in L, if adding r does not
change L, i.e. for every substitution τ : τ(A) ∈ L ⇒ τ(B) ∈ L,

r is derivable in L, if A `L B.

EX. the Harrop rule
¬A→ B1 ∨ B2

(¬A→ B1) ∨ (¬A→ B2)
is admissible in INT

A logic L is Structurally Complete, SC, if every admissible rule in L
is also derivable in L; (Class PC, LC, Int→, Medvedev L.)

r : A/B is passive in L, if for every substitution τ :
τ(A) 6∈ L, i.e. the premise is not unifiable in L.

EXAMPLE P2 : ♦p ∧ ♦¬p/⊥ is passive in S4 and extensions,

L is Almost Structurally Complete, ASC, if every admissible rule
which is not passive in L is derivable in L; admissible rules are
either derivable or passive. (NExt S4.3,  Ln),

FACT: L has projective unification ⇒ L is (A)SC,
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change L, i.e. for every substitution τ : τ(A) ∈ L ⇒ τ(B) ∈ L,
r is derivable in L, if A `L B.
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1-st order language for intuitionistic logic

We consider a first-order (or predicate) intuitionistic language
without function letters.

free individual variables: a1, a2, a3, . . .
bound individual variables: x1, x2, x3, . . .
predicate variables: P1,P2,P3, . . .

0-ary predicate variables are identified with propositional variables.
Basic logical symbols: ⊥,→,∧,∨,∀,∃. Def. as usually: ↔,¬,>.

q-Fm denotes the set of all quasi-formulas, (Fm - formulas).

ϕ ∈ Fm iff ϕ ∈ q-Fm and bound variables in ϕ do not occur free.
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Substitutions for predicate variables

2nd order substitutions ε : q-Fm→ q-Fm are mappings:
ε(P(t1, . . . , tk)) ≈

(
ε(P(x1, . . . , xk))

)
n

[x1/t1, . . . , xk/tk ]

ε(A→ B) = ε(A)→ ε(B); ε(A ∧ B) = ε(A) ∧ ε(B);
ε(¬A) = ¬ε(A); ε(A ∨ B) = ε(A) ∨ ε(B);
ε(∀xA) = ∀xε(A) ε(∃xA) = ∃xε(A)
ε(Pj(x1, . . . , xk)) 6= Pj(x1, . . . , xk) for a finite number of Pj ’s.

= is defined here up to a correct renaming of bound variables in
the substituted formulas: operation (A)n - renamig bound var. in a
uniform way.
• Pogorzelski, W.A., Prucnal, T., Structural completeness of the

first-order predicate calculus, Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik, 21 (1975), 315-320.

fv(ε(A)) ⊆ fv(A) we remove this condition !!

•Church, A., Introduction to Mathematical Logic I, Princeton 1956

Pogorzelski, Prucnal: Classical Predicate Logic is not SC;
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Superintuitionistic predicate logics

A superintuitionistic predicate logic L is any set L⊆Fm containing
schemas of intuitionistic propositional lNT + the predicate axioms:

∀x(A→ B(x))→ (A→ ∀xB(x)), ∀x(B(x)→ A)→ (∃xB(x)→ A),
∀xB(x)→ B(a), B(a)→ ∃xB(x);

closed under

MP :
A→ C ,A

C
and RG :

B(a)

∀xB(x)

where B(a) = B[x/a] and RG with: a does not occur in ∀xB(x),
and closed under substitutions: ε(A) ∈ L, for each ε, if A ∈ L.
`L - derivability is based on the rules: MP and RG only.

If L is an intermediate propositional logic, then Q-L is the least
superintuitionistic predicate logic containing L.
Q–INT is the weakest superintuitionistic predicate logic. Any
superintuitionistic predicate logic is an extension of Q–INT with
some axiom schemata. Q–CL is classical predicate logic and Q–LC
is the Gödel-Dummett predicate logic; predicate axioms: left of Q.
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1-st difference: (Non)unifiablility

Unification - as in propositional case: ε is a L-unifier if `L ε(A) etc
now: Unifiable 6= Consistent (prop. int. l. Unifiable = Consistent)

Corollary

For each consistent superintuitionistic predicate logic L and a for A:
(i) A is L-unifiable iff ;
(ii) there is a ground unifier for A in L iff;
(iii) A is valid in a classical 1st-order model with 1-elem. universe.

Unifiability in superintuitionistic predicate logics is absolute - it
does not depend on the logic and decidable - it reduces to
satisfiability in classical propositional log.

Non-unifiable formulas using {P1, . . . ,Pn} have an ,,upper bound”:

¬¬
((
¬∀x1P1(x1)∧¬∀x1¬P1(x1)

)
∨· · ·∨

(
¬∀xnPn(xn)∧¬∀xn¬Pn(xn)

))
.

Example: Non-unifiable but Consistent (1 predicate variable P):
∃x¬P(x) ∧ ∃xP(x), ∃x¬P(x) ∧ ¬¬∃xP(x), ¬∀xP(x) ∧ ¬¬∃xP(x),
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Unifiability in superintuitionistic predicate logics is absolute - it
does not depend on the logic and decidable - it reduces to
satisfiability in classical propositional log.

Non-unifiable formulas using {P1, . . . ,Pn} have an ,,upper bound”:

¬¬
((
¬∀x1P1(x1)∧¬∀x1¬P1(x1)

)
∨· · ·∨

(
¬∀xnPn(xn)∧¬∀xn¬Pn(xn)

))
.

Example: Non-unifiable but Consistent (1 predicate variable P):
∃x¬P(x) ∧ ∃xP(x), ∃x¬P(x) ∧ ¬¬∃xP(x), ¬∀xP(x) ∧ ¬¬∃xP(x),



Basis for (Admissible) Passive Rules

The rule A/B is called passive in L, if A is not unifiable in L.
Passive rules are admissible in each logic L.

P∀ is an infinite family of inferential rules consisting of:

¬∀zP(z) ∧ ¬∀z¬P(z)

⊥
,

Theorem

All passive rules are consequences, in Q–INT, of P∀,
which means that all passive rules are derivable in the extension of
Q–INT with the rules P∀.
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SC - ASC in superintuitionistic predicate logics

Let L be a structurally complete superintuitionistic predicate logic.
Since the rules P∀ are admissible (passive) they are derivable:

Theorem

If P∀ are derivable rules for a logic L, then
L ` ∃xP(x)→ ¬¬∀xP(x) and hence each Kripke frame for L has
constant domain with one-element universe.

In one-element models the quantifiers collapse: ∀xA(x) = ∃xA(x)

Corollary

If L is a Kripke complete and structurally complete
superintuitionistic predicate logic, then L is (is equivalent to) a
propositional logic. No ”nontrivial” intermediate predicate logic,
including Q–CL, is structurally complete.

Structural completeness, SC, is too strong for predicate logics.
It should be replaced by Almost SC, ASC , which is more suitable
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Projective formulas and Harrop formulas

A formula A is L-projective in a superintuitionistic predicate logic L
if there is a substitution ε (for predicate variables) called a
projective unifier for A, such that `L ε(A) and

`L A→ ∀x1 · · · ∀xk
(
ε(Pj(x1, . . . , xk))↔ Pj(x1, . . . , xk)

)
for each pr.v.Pj .

hence `L A→ (ε(B)↔ B), for each B.

FACT: Projective unification is preserved by extensions.

Harrop q-formulas q-FmH (Harrop formulas FmH) are defined by:
1. all elementary q-formulas (including ⊥) are Harrop q-formulas;
2. if A,B ∈ q-FmH , then A ∧ B ∈ q-FmH ;
3. if B ∈ q-FmH , then A→ B ∈ q-FmH ;
4. if B ∈ q-FmH , then ∀xjB ∈ q-FmH .
Neither disjunction nor existential q-formula is a Harrop formula.
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Projective unification and Harrop formulas

Theorem

If A is a unifiable Harrop formula then it is projective in Q–INT.
If ϑ is its ground unifier then ε defines its projective unifier:

ε(Pj(x)) =

{
A→ Pj(x), if ϑ(Pj(x)) = >
¬¬A ∧ (A→ Pj(x)), if ϑ(Pj(x)) = ⊥

Corollary

Any unifiable Harrop formula is projective in any superintuitionistic
predicate logic.

Since each {→,∧,⊥,∀} formula is a Harrop formula, we get

Corollary

Any unifiable formula in {→,∧,⊥, ∀} is projective in (the fragment
{→,∧,⊥,∀} of) Q–INT.
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Disjunction and Existential Property

Let L be a predicate logic and A be L-projective.

Theorem

(i) if `L A→ B1 ∨ B2, then `L (A→ B1) ∨ (A→ B2);
(ii) if `L A→ ∃xC (x), then `L ∃x(A→ C (x)).

L has the disjunction property (DP) if `L B1 ∨ B2 implies either
`L B1, or `L B2. The logic has the existence property (EP) if
`L ∃xC (x) implies `L C (t) for some term (=free variable) t.

Corollary

If a superintuitionistic predicate logic L enjoys (DP) and (EP), then
for any L-projective formula A and any formulas B1,B2,∃xC (x)
(i) if `L A→ B1 ∨ B2, then `L (A→ B1) or `L (A→ B2);
(ii) if `L A→ ∃xC (x), then `L A→ C (t) for some t.

There are Q − INT projective formulas A (proposit.) which are not
Harrop’s : P → Q ∨ R. There are Harrop formulas which are not
Q − INT projective (not unifiable !): ¬¬∃xP(x) ∧ ¬¬∃x¬P(x).
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Rules admissible in superintuitionistic logics

The rule
¬A→ B1 ∨ B2

(¬A→ B1) ∨ (¬A→ B2)

is admissible in every superintuitionistic propositional logic:
• Prucnal, T.,On two problems of Harvey Friedman, Studia Logica
38 (1979), 257-262.
but is NOT admissible in the superintuitionistic predicate logic of
the frame:
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¬A = ¬¬∃xP(x) ∧ ¬¬∃x¬P(x) (a non-unifiable Harrop formula),
B1 = ∃xQ(x) and B2 = ∃x¬Q(x). moreover D0 = D3 = {0} and
D1 = D2 = N
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Rules admissible in all superintuitionistic logics

The following rules are admissible in every superintuitionistic
predicate logic:

¬¬∀x(A(x) ∨ ¬A(x))→ B1 ∨ B2

(¬¬∀x(A(x) ∨ ¬A(x))→ B1) ∨ (¬¬∀x(A(x) ∨ ¬A(x))→ B2)
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∃x(¬¬∀x(A(x) ∨ ¬A(x))→ C (x))
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Logics with Projective Unification

Theorem

The following conditions are equivalent
(i) L enjoys projective unification;
(ii) P.Q − LC ⊆ L, where P := ∃x(∃xA(x)→ A(x)) Plato’s law;
(iii) each formula is (L-equivalent to) a Harrop’s one
(iv) each formula is L-equivalent to a formula in {→,⊥,∧,∀}.
Definitions (valid in P.Q–LC)

A ∨ B := ((A→ B)→ B) ∧ ((B → A)→ A);

∃xA(x) := ∀x(∀y (A(y)→ A(x))→ A(x)).

Moreover, if we extend the {→,∧,⊥,∀} fragment of Q-INT with
the above definitions, we obtain P.Q–LC.

Corollary

P.Q–LC is the least predicate logic in which A ∨ B and ∃xA(x)
are defined in {→,∧,⊥,∀} (or are Harrop’s).



Logics with Projective Unification

Theorem

The following conditions are equivalent
(i) L enjoys projective unification;
(ii) P.Q − LC ⊆ L, where P := ∃x(∃xA(x)→ A(x)) Plato’s law;

(iii) each formula is (L-equivalent to) a Harrop’s one
(iv) each formula is L-equivalent to a formula in {→,⊥,∧,∀}.
Definitions (valid in P.Q–LC)

A ∨ B := ((A→ B)→ B) ∧ ((B → A)→ A);

∃xA(x) := ∀x(∀y (A(y)→ A(x))→ A(x)).

Moreover, if we extend the {→,∧,⊥,∀} fragment of Q-INT with
the above definitions, we obtain P.Q–LC.

Corollary

P.Q–LC is the least predicate logic in which A ∨ B and ∃xA(x)
are defined in {→,∧,⊥,∀} (or are Harrop’s).



Logics with Projective Unification

Theorem

The following conditions are equivalent
(i) L enjoys projective unification;
(ii) P.Q − LC ⊆ L, where P := ∃x(∃xA(x)→ A(x)) Plato’s law;
(iii) each formula is (L-equivalent to) a Harrop’s one

(iv) each formula is L-equivalent to a formula in {→,⊥,∧,∀}.
Definitions (valid in P.Q–LC)

A ∨ B := ((A→ B)→ B) ∧ ((B → A)→ A);

∃xA(x) := ∀x(∀y (A(y)→ A(x))→ A(x)).

Moreover, if we extend the {→,∧,⊥,∀} fragment of Q-INT with
the above definitions, we obtain P.Q–LC.

Corollary

P.Q–LC is the least predicate logic in which A ∨ B and ∃xA(x)
are defined in {→,∧,⊥,∀} (or are Harrop’s).



Logics with Projective Unification

Theorem

The following conditions are equivalent
(i) L enjoys projective unification;
(ii) P.Q − LC ⊆ L, where P := ∃x(∃xA(x)→ A(x)) Plato’s law;
(iii) each formula is (L-equivalent to) a Harrop’s one
(iv) each formula is L-equivalent to a formula in {→,⊥,∧,∀}.

Definitions (valid in P.Q–LC)

A ∨ B := ((A→ B)→ B) ∧ ((B → A)→ A);

∃xA(x) := ∀x(∀y (A(y)→ A(x))→ A(x)).

Moreover, if we extend the {→,∧,⊥,∀} fragment of Q-INT with
the above definitions, we obtain P.Q–LC.

Corollary

P.Q–LC is the least predicate logic in which A ∨ B and ∃xA(x)
are defined in {→,∧,⊥,∀} (or are Harrop’s).



Logics with Projective Unification

Theorem

The following conditions are equivalent
(i) L enjoys projective unification;
(ii) P.Q − LC ⊆ L, where P := ∃x(∃xA(x)→ A(x)) Plato’s law;
(iii) each formula is (L-equivalent to) a Harrop’s one
(iv) each formula is L-equivalent to a formula in {→,⊥,∧,∀}.
Definitions (valid in P.Q–LC)

A ∨ B := ((A→ B)→ B) ∧ ((B → A)→ A);

∃xA(x) := ∀x(∀y (A(y)→ A(x))→ A(x)).

Moreover, if we extend the {→,∧,⊥,∀} fragment of Q-INT with
the above definitions, we obtain P.Q–LC.

Corollary

P.Q–LC is the least predicate logic in which A ∨ B and ∃xA(x)
are defined in {→,∧,⊥,∀} (or are Harrop’s).



Logics with Projective Unification

Theorem

The following conditions are equivalent
(i) L enjoys projective unification;
(ii) P.Q − LC ⊆ L, where P := ∃x(∃xA(x)→ A(x)) Plato’s law;
(iii) each formula is (L-equivalent to) a Harrop’s one
(iv) each formula is L-equivalent to a formula in {→,⊥,∧,∀}.
Definitions (valid in P.Q–LC)

A ∨ B := ((A→ B)→ B) ∧ ((B → A)→ A);

∃xA(x) := ∀x(∀y (A(y)→ A(x))→ A(x)).

Moreover, if we extend the {→,∧,⊥, ∀} fragment of Q-INT with
the above definitions, we obtain P.Q–LC.

Corollary

P.Q–LC is the least predicate logic in which A ∨ B and ∃xA(x)
are defined in {→,∧,⊥,∀} (or are Harrop’s).



Logics with Projective Unification

Theorem

The following conditions are equivalent
(i) L enjoys projective unification;
(ii) P.Q − LC ⊆ L, where P := ∃x(∃xA(x)→ A(x)) Plato’s law;
(iii) each formula is (L-equivalent to) a Harrop’s one
(iv) each formula is L-equivalent to a formula in {→,⊥,∧,∀}.
Definitions (valid in P.Q–LC)

A ∨ B := ((A→ B)→ B) ∧ ((B → A)→ A);

∃xA(x) := ∀x(∀y (A(y)→ A(x))→ A(x)).

Moreover, if we extend the {→,∧,⊥, ∀} fragment of Q-INT with
the above definitions, we obtain P.Q–LC.

Corollary

P.Q–LC is the least predicate logic in which A ∨ B and ∃xA(x)
are defined in {→,∧,⊥,∀} (or are Harrop’s).



P .Q − LC

Corollary

Every superintuitionistic predicate logic extending P.Q-LC is
almost structurally complete.

Theorem

P is valid on a rooted frame F =<W ,≤,D > if and only if F
has a constant domain and one of the following holds
(1) the domain of F is one-element;
(2) the domain of F is finite and ≤ is a linear order on W ;
(3) (the domain of F is infinite and) ≤ is a well-order on W .

Corollaries: Q–INT, CD.Q–INT, Q–LC, CD.Q–LC, and some other
logics are Kripke incomplete
It might suggest that CD ∈ P.Q − LC , but CD /∈ P.Q − LC .

Corollary

The logic P.Q–LC is Kripke incomplete.
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Unification types.

We develop unification types for superintutionistic predicate logics.
Standard definitions of the types: 1, ω,∞, 0 are introduced but if
one tries to follow the results on unification types in propositional
logics, despite some similarities, the results are different: the
unification type of Q–L is usually ”more complicated” then the
unification type of the propositional logic L.
Unification in L is unitary (type is 1) if the set of unifiers of any
unifiable formula A contains a greatest, w.r.t �, element of A, an
mgu of A). Unification in L is finitary (type is ω), if it is not 1 but
there is finitely many �-maximal unifiers for each unifiable A and
each unifier for A is bounded by a maximal one. Unification in L is
infinitary (type is ∞ ) if it is not 1, nor ω, and each L-unifier of A
is bounded by a maximal one. Unification in L is nulary (type is 0 )
if it is neither 1, nor ω, nor ∞.

Corollary

Unification in P.Q–LC and all its extensions is unitary.
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Filtering unification.

Unification in L is said to be filtering if given two unifiers for any
formula A one can find a unifier that is more general than both of
them. If unification is filtering, then every unifiable formula either
has an mgu (unific - unitary) or no basis of unifiers exists (nullary)

Theorem

Unification in L is filtering iff Q–KC ⊆ L.

Corollary

For every superintuitionistic predicate logic L
(i) if Q–KC ⊆ L, then unification in L is unitary or nullary;
(ii) if L enjoys unitary unification, then Q–KC ⊆ L.
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Weak existence property

L is said to have the weak existence property, (WEP):
∃xA(x) ∈ L⇒ A(t1) ∨ · · · ∨ A(tn) ∈ L for some t1, . . . , tn.
(EP) implies (WEP), but not conversely.
It is known that Q–KP, Q–LC enjoy (WEP).
(WEP) does not hold for any L ⊆ Q–CL such that P ∈ L, e.g. it
fails in P.Q–LC.

Theorem

If a superintuitionistic predicate logic L enjoys (WEP), then
unification in L is neither finitary, nor unitary.

Corollary

Unification in Q–LC as well as in Q–KC, is nullary (in propos. 1)

Corollary

The unification type of Q–INT, CD.Q–INT and Q–KP is 0 or ∞
(in INT - ω)

Conjecture: some predicate logics have infinitary unification.
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Thank you for your attention !



Unification in Predicate Modal Logics

Theorem

The rules P♦∃ :

♦A ∧ ♦¬A
⊥

,
♦∃zA(z) ∧ ♦∃z¬A(z)

⊥
,
♦∃u∃vA(u, v) ∧ ♦∃u∃v¬A(u, v)

⊥
, . . .

form a basis for all passive rules over Q–S4 and its extensions. No
sublogic of Q-CL is structurally complete (too strong property).
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Projective fromulas in Predicate Modal Logics

A unifier ε for predicate variables is projective for a formula A (or
formula A is projective) in a logic L if

`L �A→ ∀x1 · · · ∀xk
(
ε(Pj(x1, . . . , xk))↔ Pj(x1, . . . , xk)

)
, for each Pj .

Theorem

For any L-projective formula A and any formulas B1,B2, ∃xC (x),
(i) if `L A→ �B1 ∨�B2, then `L �(�A→ B1) ∨�(�A→ B2);
(ii) if `L A→ ∃x�C (x), then `L ∃x�(�A→ C (x)).

the disjunction property (DP): `L �B1 ∨�B2 ⇒ `L B1, or `L B2.
the existence property (EP): `L ∃x�C (x) ⇒ `L C (t), for some
term t (free variable)
Rasiowa-Sikorski: Q–S4 enjoys (DP) and (EP);



Projective fromulas in Predicate Modal Logics

Corollary

For L with (DP) and (EP), any L-projective A, any B1,B2,∃xC (x):
(i) if `L A→ �B1 ∨�B2, then `L (�A→ B1) or `L (�A→ B2);
(ii) if `L A→ ∃x�C (x), then `L �A→ C (t) for some t.

Formulas which are not projective (in Q–S4):
- any �B1 ∨�B2 which does not reduce to any its disjunct, or
- any ∃x�C (x) which does not collapse to any its instance �C (t).



Projective unification, ASC in Predicate Modal Logics

Corollary

If L enjoys projective unification, then P.Q–S4.3⊆ L, where P :
∃x�(∃x�P(x)→ P(x)).
(The converse - if = is in the language).

Q–S5 has projective unification.
P.Q–S4.3 is Kripke incomplete. BF :∀x�A→ �∀xA /∈ P.Q–S4.3;
- P 6∈ BF.Q–S4.3 and .3 6∈ P.Q–S.4.

Corollary

If L has projective unification, then L is Almost Structurally
Complete (ASC).
Q–S5 is ASC.



Filtering unification in Predicate Modal Logics

Let �+A = A ∧�A and ♦+A = A ∨ ♦A.
Ghilardi and Sacchetti (JSL68,2004): For L a prop. modal logic L
⊆ K4, unification in L is filtering iff : 2+ : ♦+�+A→ �+♦+A.

Theorem

Let L be a predicate modal logics extending Q–K4. Unification in
L is filtering iff L contains 2+ : ♦+�+A→ �+♦+A.

Corollary

(i) For every predicate modal logic L constaining Q–K4
if 2+ : ♦+�+A→ �+♦+A is in L , then unification in L is
unitary or nullary. Moreover, if L enjoys unitary unification, then
♦+�+A→ �+♦+A is in L, i.e. Q–K4.2+⊆ L.
(ii) For every predicate modal logic L containing Q–S4
if 2 : ♦�A→ �♦A is in L, then unification in L is unitary or
nullary. Moreover, if L enjoys unitary unification, then
♦�A→ �♦A is in L, i.e. Q–S4.2⊆ L.



Unification types in Predicate Modal Logics

a predicate modal logic L constaining Q–S4 have the weak
existence property, (WEP), if ∃x�A(x) ∈ L implies
�A(t1) ∨ · · · ∨�A(tn) ∈ L, for some terms t1, . . . , tn.

Theorem

If a modal predicate logic L enjoys (WEP), then unification in L is
neither finitary, nor unitary.

Corollary

Unification in Q–S4.3 and in Q–S4.2 is nullary.

In contrast to S4.3 unification in some extensions of Q–S4.3 can
be unitary or nullary.

Corollary

The unification type of Q–K4 and Q–S4 is either 0 or ∞.


