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Part I: Ultrafilter extensions



Space of ultrafilters

For X a set, let ββX “ tu : u is an ultrafilter over Xu.

Basic open sets: rS “ tu P ββX : S P uu for all S Ď X.

Facts. The space ββX is:

(i) compact,

(ii) Hausdorff,

(iii) extremally disconnected,

(iv) includes X as a dense subspace (identifying X

with the set of principal ultrafilters),

(v) the largest compactification of X endowed with

the discrete topology: For any compact Hausdorff Y

and any h : X Ñ Y , there is a unique continuous

extension rh : ββX Ñ Y :

ββX
rh
""

X

OO

h // Y



Ultrafilter extensions of models

Fix a first-order language and consider an arbitrary

model

A “ pX,F, . . . , R, . . .q

with the universe X, operations F, . . . , and relations

R, . . . on X.

An abstract ultrafilter extension of A is a model A1

(in the same language) of form

A1 “ pββX,F 1, . . . , R1, . . .q

with the universe ββX in which operations F 1, . . . and

relations R1, . . . extend F, . . . and R, . . . resp.

There are essentially two known canonical ways to

extend relations by ultrafilters, and only one to ex-

tend maps.



Extending relations

Let R Ď X1 ˆ . . .ˆXn.

Larger extension

Define R˚ Ď ββX1 ˆ . . .ˆ ββXn by letting

R˚pu1, . . . , unq iff

p@A1 P u1q . . . p@An P unqpDx1 P A1q . . . pDxn P Anq

Rpx1, . . . , xnq.

Smaller extension

Define rR Ď ββX1 ˆ . . .ˆ ββXn by letting

rRpu1, . . . , unq iff
 

x1 P X1 : . . . txn P Xn : Rpx1, . . . , xnqu P un . . .
(

P u1.



Ultrafilter quantifiers

Let p@ uxqϕpx, . . .q means tx : ϕpx, . . .qu P u.

Facts.

1. Self-dual: @ u and D u are equivalent.

2. Do not commute: p@ uxqp@ vyq and p@ vyqp@ uxq are

not equivalent.

3. Second-order: p@ uxq is equivalent to p@A P uqpDx P

Aq and also to pDA P uqp@x P Aq.



Rewritting smaller extensions of relations

Via ultrafilter quantifiers:

rRpu1, . . . , unq iff p@ u1x1q . . . p@
unxnq Rpx1, . . . , xnq.

Via second-order quantifiers:

rRpu1, . . . , unq iff

p@A1 P u1qpDx1 P A1q . . . p@An P unqpDxn P Anq

Rpx1, . . . , xnq.



Facts. 1. If R is unary, then rR “ R˚ is basic open.

In general, rR Ď R˚.

2. The extensions vs operations on relations:

´ X Y ˝ ´1

r 1 1 1 0 0
˚ 0 0 1 1 1

An opposite character: r well behaves with Boolean

but not “group-like” operations, while ˚ conversely.



Extending maps

Let F : X1 ˆ . . . ˆ Xn Ñ Y . The extended map
rF : ββX1 ˆ . . .ˆ ββXn Ñ ββY is defined by letting

rF pu1, . . . , unq “
 

A Ď Y : tx1 P X1 : . . . txn P Xn :

F px1, . . . , xnq P Au P un . . .u P u1
(

.

Rewritting via ultrafilter quantifiers:

rF pu1, . . . , unq “
 

A Ď Y : p@ u1x1q . . . p@
unxnq F px1, . . . , xnq P A

(

.

Facts. Let F be a unary map. Then the map rF :

(i) is continuous,

(ii) coincides with R˚ (but not with rR) where R is

F considered as a binary relation.

Both items are not true for maps of bigger arity.



Extending models

Let A “ pββX,F, . . . , R, . . .q be a first-order model.

Define two ultrafilter extensions of A as follows:

Larger extension

A˚ “ pββX, rF , . . . , R˚, . . .q.

Smaller extension

ĂA “ pββX, rF , . . . , rR, . . .q.

Both are canonical in a sense explained below.



First Extension Theorem

Theorem. Let h be a homomorphism between

models A and B. The continuous extension rh is:

(i) a homomorphism between A˚ and B˚:

A˚
rh // B˚

A h //

OO

B

OO

(ii) a homomorphism between ĂA and ĂB :

ĂA
rh //ĂB

A h //

OO

B

OO

Both (i) and (ii) remain true for embeddings and

some other model-theoretic interrelations.

This is a partial case of the much stronger Sec-

ond Extension Theorem. To formulate it, describe

topological properties of both extensions.



Topology of the extensions

Let X1, . . . , Xn, Y be topological spaces and suppose

A1 Ď X1, . . . , An´1 Ď Xn´1.

1. A map F : X1 ˆ . . . ˆXn Ñ Y is right continuous

w.r.t. A1, . . . , An´1 iff for each i, 1 ď i ď n, and every

a1 P A1, . . . , ai´1 P Ai´1 and xi`1 P Xi`1, . . . , xn P Xn,

the map

x ÞÑ F pa1, . . . , ai´1, x, xi`1, . . . , xnq

of Xi into Y is continuous.

2. A relation R Ď X1 ˆ . . . ˆXn is right open (right

closed, etc.) w.r.t. A1, . . . , An´1 iff for each i, 1 ď

i ď n, and every a1 P A1, . . . , ai´1 P Ai´1 and xi`1 P

Xi`1, . . . , xn P Xn, the set
 

x P Xi : Rpa1, . . . , ai´1, x, xi`1, . . . , xnq
(

is open (closed, etc.) in Xi.



Theorem. If A “ pA,F, . . . , R, . . .q is a model then:

(i) all operations rF , . . . in the extensions A˚ and ĂA

are right continuous w.r.t. A,

(ii) all relations rR, . . . in the extension ĂA are right

clopen w.r.t. A,

(iii) all relations R˚, . . . in the extension A˚ are closed

in the product topology.

This allows us to consider models whose topological

properties are similar to the properties of ultrafilter

extensions of each of the described two types.



Second Extension Theorem

Theorem. Let A and C be two models, h a homo-

morphism of A into C, and let C carry a compact

Hausdorff topology in which all operations are right

continuous w.r.t. h“A (the image of the universe

of A under h).

(i) If all relations in C are closed, then rh is a homo-

morphism of A˚ into C:

A˚
rh
""

A

OO

h // C

(ii) If all relations in C are right closed w.r.t. h“A,

then rh is a homomorphism of ĂA into C:

ĂA
rh
  

A

OO

h // C

(Note: in (ii), the class of target models C is wider.)



Facts. 1. The First Extension Theorem follows

from the Second one: pick C equal to B˚, resp.,

to ĂB .

2. The Second Extension Theorem generalizes the

classical fact about the space ββX as the largest

compactification of a discrete space X to the case

when X carries an arbitrary first-order structure.

3. The models A˚ and ĂA are unique (up to isomor-

phism) extensions of A satisfying the theorem.

2. and 3. shows that both extensions can be

considered as canonical.



Historical remarks

Largest compactification:

Tychonoff spaces: Čech, Stone (indep., 1937), T1-

spaces: Wallman (1938).

Larger extension of relations:

Jónsson and Tarski (1951, 1952), rediscovered by

Lemmon and Scott (1966), Goldblatt and Thoma-

son (1975), more explicitly: Goldblatt (1989). The

name “ultrafilter extension”: probably van Benthem

(1979).

Smaller extension of relations:

Saveliev (2011).



Extension of maps:

Pairing: Kochen (1961), Frayne, Morel, and Scott

(1963) (then Gaifman, Kunen, and many others for

iterated ultraproducts).

Multiplication in semigroups: Galvin and Glazer (1974)

(then Hindman and many others for algebra of ul-

trafilters).

In general: Goranko (2007) and Saveliev (2011).

The First Extension theorem:

Larger extension: Goranko (2007), smaller exten-

sion: Saveliev (2011).

The Second Extension Theorem:

Larger extension: Saveliev (2014), smaller exten-

sion: Saveliev (2011).



Part II: Generalized models



Extension of extension

Immediate purpose. An alternative description of

the larger extension of relation using continuous ex-

tensions of maps. For this, we extend the extension

procedure itself .

For functions f : X Ñ Y , let

extpfq “ rf.

Then:

(i) ext is a map of Y X into CpββX, ββY q,

(ii) CpββX, ββY q with the standard (pointwise con-

vergence) topology is a compact Hausdorff space,

hence:

(iii) ext continuously extends to Ąext on ββpY Xq:

ββpY Xq
Ąext

!!Y X

OO

ext // CpββX, ββY q

The map Ąext is surjective and non-injective.



If X “ n, then ββX “ n and so

CpββX, ββY q “ pββY qn “ ββY ˆ . . .ˆ ββY (n times).

The alternative description of the ˚ -extension:

Theorem. Let R Ď X ˆ . . .ˆX. Then

R˚ “Ąext“ cl ββpXnqR,

the image of the closure of R in the space ββpXnq

under Ąext.

Using ultrafilters over maps leads to the following

idea.



Generalized models

1. A generalized (or ultrafilter) interpretation is

a map ı that takes:

(i) each n-ary functional symbol F to an ultrafilter

over the set of n-ary operations on X,

(ii) each n-ary predicate symbol R to an ultrafilter

over the set of n-ary relations on X:

ıpF q P ββpXXˆ...ˆXq, ıpRq P ββ PpX ˆ . . .ˆXq.

2. An ultrafilter valuation of variables is a map v

that takes each variable x to an ultrafilter over X:

vpxq P ββX.

3. A generalized model is pββX, ıpF q, . . . , ıpRq, . . .q.

We are going to define the satisfiability relation (

in generalized models.



Valuation of terms

Let app : X1 ˆ . . . ˆ Xn ˆ Y X1ˆ...ˆXn Ñ Y be the

application operation:

apppa1, . . . , an, fq “ fpa1, . . . , anq.

Extend it to the map Ąapp right continuous w.r.t. the

principal ultrafilters, in the usual way:

ββX1 ˆ . . .ˆ ββXn ˆ ββpY
X1ˆ...ˆXnq

Ąapp// ββY

X1 ˆ . . .ˆXn ˆ Y
X1ˆ...ˆXn

OO

app// Y

OO

Given ı and v , define vı on terms by induction:

(i) vı coincides with v on variables,

(ii) if vı has been already defined on terms t1, . . . , tn,

vıpF pt1, . . . , tnqq “ Ąapppvıpt1q, . . . , vıptnq, ıpF qq.



Satisfiability

Let in Ď X1ˆ . . .ˆXnˆPpX1ˆ . . .ˆXnq be the mem-

bership relation:

in pa1, . . . , an, Rq iff pa1, . . . , anq P R.

Extend it to the relation

Ăin Ď ββX1 ˆ . . .ˆ ββXn ˆ ββ PpX1 ˆ . . .ˆXnq

right clopen w.r.t. principal ultrafilters.

Define ( by induction:

(i) A ( t1 “ t2 rvs iff vıpt1q “ vıpt2q,

(ii) if Rpt1, . . . , tnq is an atomic formula in which R is

not the equality predicate,

A ( Rpt1, . . . , tnq rvs iff Ăin pvıpt1q, . . . , vıptnq, ıpP qq,

(iii) if ϕpt1, . . . , tnq is obtained by Boolean connec-

tives or quantifiers from formulas for which ( has

been already defined, define A ( ϕ rvs in the standard

way.



Remarks.

Generalized models generalize not all ordinary mod-

els but those that are ultrafilter extensions of some

models.

If a generalized interpretation is principal (all non-

logical symbols are interpreted by principal ultrafil-

ters), it is identified with an ordinary interpretation

with the same universe ββX. Not every ordinary

interpretation with the universe ββX is of this form.

Precise relationships between generalized models,

ordinary models, and ultrafilter extensions will be de-

scribed below. For this, we provide two operations,

e and E, which turn generalized models into certain

ordinary models that generalize ˚ - and r -extensions.



Operation e

First expand the domain of ext by n-ary functions:

for f : X1 ˆ . . .ˆXn Ñ Y , let

extpfq “ rf.

Then:

(i) ext is a map of Y X1ˆ...ˆXn into

RCX1,...,Xn´1
pββX1 ˆ . . .ˆ ββXn, ββY q,

the set of functions of ββX1 ˆ . . .ˆ ββXn into ββY that

are right continuous w.r.t. X1, . . . , Xn´1,

(ii) the latter set is closed in the compact Hausdorff

space of all functions

ββY ββX1ˆ...ˆββXn

so is compact Hausdorff too,

(iii) ext continuously extends to Ąext on ββpY X1ˆ...ˆXnq.



Define e as follows:

(i) on functions, let e be Ąext in this expanded mean-

ing, so e takes ultrafilters over functions to functions

over ultrafilters:

e : ββpY X1ˆ...ˆXnq Ñ ββY ββX1ˆ...ˆββXn,

(ii) by identifying relations with their characteristic

functions, let also e take ultrafilters over relations

to relations over ultrafilters:

e : ββ PpX1 ˆ . . .ˆXnq Ñ PpββX1 ˆ . . .ˆ ββXnq.

Fact. Both e and Ąapp (or Ăin ) are expressed via each

other: if f P ββpY X1ˆ...ˆXnq, r P ββ PpX1ˆ . . .ˆXnq, and

u1 P ββX1, . . . , un P ββXn , then

epfqpu1, . . . , unq “ Ąapppu1, . . . , un, fq,

eprqpu1, . . . , unq iff Ăin pu1, . . . , un, rq.



For a generalized model B “ pββX, f, . . . , r, . . .q, let

epBq “ pββX, epfq, . . . , eprq, . . .q.

Note that epBq is an ordinary model with the same

universe.

Theorem. Let A is a generalized model. Then for

all formulas ϕ and elements u1, . . . , un of the universe

of A,

A ( ϕ ru1, . . . , uns iff epAq ( ϕ ru1, . . . , uns.



Operation E

Define a map E, with the same domain and range

that the map e has, as follows:

(i) E and e coincide on ββpY X1ˆ...ˆXnq,

(ii) if r P ββ PpX1 ˆ . . .ˆXnq then

Eprq “
 

Ąextpqq : q PĄextprq
(

.

Fact. Eprq is a closed subspace of ββX1 ˆ . . .ˆ ββXn.

Proposition. Let r P ββ PpX1 ˆ . . .ˆXnq. Then

eprq “ rR and Eprq “ R˚

for R “ eprqXpX1ˆ . . .ˆXnq “ EprqXpX1ˆ . . .ˆXnq “
Ş

SPr

Ť

S.



For a generalized model B “ pββX, f, . . . , r, . . .q, let

EpBq “ pββX,Epfq, . . . , Eprq, . . .q.

Then EpBq, like epBq, is an ordinary model with the

same universe.

By Proposition above, whether the models epBq and

EpBq are ultrafilter extensions of some models de-

pends only on the generalized interpretation of func-

tional symbols in B.



Generalized models vs ultrafilter extensions

An ultrafilter f over functions is pseudo-principal iff
Ąapp takes any tuple consisting of principal ultrafilters

together with f to a principal ultrafilter:

a1 P X1, . . . , an P Xn implies Ąapppa1, . . . , an, fq P Y.

Facts. 1. Every principal f is pseudo-principal.

2. There exist pseudo-principal ultrafilters that are

not principal as well as ultrafilters that are not pseudo-

principal.

A generalized interpretation ı is pseudo-principal on

functional symbols iff ıpF q is a pseudo-principal ul-

trafilter for each functional symbol F .



Theorem. Let B be a generalized model with the

universe ββX. The following are equivalent:

(i) epBq “ĂA for a model A with the universe X,

(ii) EpBq “ A˚ for a model A with the universe X,

(iii) the interpretation in B is pseudo-principal on

functional symbols.

Moreover, the model A in (i) and (ii) is the same.



Generalized models vs ordinary models

Whether an ordinary model with the universe ββX is

of form epBq or EpBq, for some generalized model B

(clearly, with the same universe ββX) depends only

on its topological properties:

Theorem. Let A be an ordinary model with the

universe ββX. Then:

(i) A “ epBq for a generalized model B iff in A

all operations are right continuous w.r.t. X and all

relations are right clopen w.r.t. X,

(ii) A “ EpBq for a generalized model B iff in A

all operations are right continuous w.r.t. X and all

relations are closed.

Note: two last theorem together generalizes the

description of topological properties of ultrafilter

extensions from Part I.


