Wild Algebras in Cartesian Categorical Logic

Michael Lambert

Dalhousie University

30 July 2017

1 / 15

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Cartegorical Logic 30 July 2017

Introduction: Wild Algebras

Cartesian Logic

An Undecidable Theory

Representation Embeddings

Summary and Conclusion

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic

Introduction: Wild Algebras

A Conjecture

Let k denote an algebraically closed field. The free associative algebra $k\langle X, Y \rangle$ is known to have an undecidable classical first-order theory of modules [Bau75],[Pre88].

A Conjecture

Let k denote an algebraically closed field. The free associative algebra $k\langle X, Y \rangle$ is known to have an undecidable classical first-order theory of modules [Bau75],[Pre88].

Definition

A finite-dimensional algebra S over k is "wild" is there is a finitely-generated (S, k(X, Y))-bimodule M such that an induced tensor functor

$$M \otimes_{k \langle X, Y \rangle} - \colon k \langle X, Y \rangle \operatorname{\!-mod} \to S\operatorname{\!-mod}$$

of categories of finite-dimensional modules reflects isomorphism and preserves and reflects indecomposable modules.

A Conjecture

Let k denote an algebraically closed field. The free associative algebra $k\langle X, Y \rangle$ is known to have an undecidable classical first-order theory of modules [Bau75],[Pre88].

Definition

A finite-dimensional algebra S over k is "wild" is there is a finitely-generated $(S, k \langle X, Y \rangle)$ -bimodule M such that an induced tensor functor

$$M \otimes_{k \langle X, Y \rangle} - \colon k \langle X, Y \rangle \operatorname{\!-mod} \to S\operatorname{\!-mod}$$

of categories of finite-dimensional modules reflects isomorphism and preserves and reflects indecomposable modules.

Conjecture: Every wild finite-dimensional algebra has an undecidable theory of modules [Pre88].

Algebraic and Cartesian Theories

Here the "wild implies undecidable" conjecture is reformulated in the cartesian fragment of categorical logic.

Algebraic and Cartesian Theories

Algebraic and Cartesian Theories

Here the "wild implies undecidable" conjecture is reformulated in the cartesian fragment of categorical logic. A theory is given by its signature, axioms and the sequents obtained as consequences under a specified notion of derivability.

• A Horn theory uses only ' \wedge ' and ' \top '.

Algebraic and Cartesian Theories

Here the "wild implies undecidable" conjecture is reformulated in the cartesian fragment of categorical logic. A theory is given by its signature, axioms and the sequents obtained as consequences under a specified notion of derivability.

• A Horn theory uses only ' \wedge ' and ' \top '. Algebraic theories are Horn.

Algebraic and Cartesian Theories

- A Horn theory uses only ' \land ' and ' \top '. Algebraic theories are Horn.
- A Regular theory is Horn allowing ' \exists '.

Algebraic and Cartesian Theories

- A Horn theory uses only ' \land ' and ' \top '. Algebraic theories are Horn.
- A Regular theory is Horn allowing '∃'.
- Cartesian formulas are defined inductively: atomic formulas and finite conjunctions of cartesian formulas are cartesian. 'x.∃yφ' is cartesian provided that x, y.φ is cartesian and a certain sequent is provable.

Algebraic and Cartesian Theories

- A Horn theory uses only ' \land ' and ' \top '. Algebraic theories are Horn.
- A Regular theory is Horn allowing '∃'.
- Cartesian formulas are defined inductively: atomic formulas and finite conjunctions of cartesian formulas are cartesian. 'x.∃yφ' is cartesian provided that x, y.φ is cartesian and a certain sequent is provable.
- A regular theory is cartesian if its axioms admit a partial order in which any given axiom is cartesian relative to the subtheory generated by the axioms preceding it in the order.

Syntactic Categories

Associated to any cartesian theory $\mathbb T$ is its syntactic category $\mathscr C_{\mathbb T}.$

Syntactic Categories

Associated to any cartesian theory $\mathbb T$ is its syntactic category $\mathscr C_{\mathbb T}.$

• Objects: α -equivalence classes of formulas-in-context $\{\mathbf{x}.\phi\}$ with ϕ cartesian.

Syntactic Categories

Associated to any cartesian theory $\mathbb T$ is its syntactic category $\mathscr C_{\mathbb T}.$

- Objects: α -equivalence classes of formulas-in-context $\{\mathbf{x}.\phi\}$ with ϕ cartesian.
- Arrows: classes $[\theta]$: $\{\mathbf{x}.\phi\} \rightarrow \{\mathbf{y}.\psi\}$ of \mathbb{T} -provably-equivalent cartesian formulas θ that are \mathbb{T} -provably functional:

$$\begin{split} \theta \vdash_{\mathbf{x},\mathbf{y}} \phi \wedge \psi \\ \theta \wedge \theta[\mathbf{z}/\mathbf{y}] \vdash_{\mathbf{x},\mathbf{y},\mathbf{z}} \mathbf{y} = \mathbf{z} \\ \phi \vdash_{\mathbf{x}} \exists \mathbf{y} \theta. \end{split}$$

Syntactic Categories

Associated to any cartesian theory $\mathbb T$ is its syntactic category $\mathscr C_{\mathbb T}.$

- Objects: α -equivalence classes of formulas-in-context $\{\mathbf{x}.\phi\}$ with ϕ cartesian.
- Arrows: classes $[\theta]$: $\{\mathbf{x}.\phi\} \rightarrow \{\mathbf{y}.\psi\}$ of \mathbb{T} -provably-equivalent cartesian formulas θ that are \mathbb{T} -provably functional:

$$\begin{aligned} \theta \vdash_{\mathbf{x},\mathbf{y}} \phi \wedge \psi \\ \theta \wedge \theta[\mathbf{z}/\mathbf{y}] \vdash_{\mathbf{x},\mathbf{y},\mathbf{z}} \mathbf{y} = \mathbf{z} \\ \phi \vdash_{\mathbf{x}} \exists \mathbf{y} \theta. \end{aligned}$$

The syntactic category $\mathscr{C}_{\mathbb{T}}$ is cartesian, Cauchy-complete, and has a universal property.

Syntactic Categories

Associated to any cartesian theory $\mathbb T$ is its syntactic category $\mathscr C_{\mathbb T}.$

- Objects: α -equivalence classes of formulas-in-context $\{\mathbf{x}.\phi\}$ with ϕ cartesian.
- Arrows: classes $[\theta]$: $\{\mathbf{x}.\phi\} \rightarrow \{\mathbf{y}.\psi\}$ of \mathbb{T} -provably-equivalent cartesian formulas θ that are \mathbb{T} -provably functional:

$$\begin{array}{c} \theta \vdash_{\mathbf{x},\mathbf{y}} \phi \land \psi \\ \theta \land \theta[\mathbf{z}/\mathbf{y}] \vdash_{\mathbf{x},\mathbf{y},\mathbf{z}} \mathbf{y} = \mathbf{z} \\ \phi \vdash_{\mathbf{x}} \exists \mathbf{y} \theta. \end{array}$$

The syntactic category $\mathscr{C}_{\mathbb{T}}$ is cartesian, Cauchy-complete, and has a universal property.

Theorem

For any cartesian theory $\mathbb T$ and any cartesian category $\mathscr D,$ there is an equivalence

$$\mathsf{Cart}(\mathscr{C}_{\mathbb{T}},\mathscr{D})\simeq\mathbb{T} ext{-}\mathrm{Mod}(\mathscr{D}).$$

The syntactic category $\mathscr{C}_{\mathbb{T}}$ has a universal model of \mathbb{T} denoted $\boldsymbol{M}_{\mathbb{T}}.$

The syntactic category $\mathscr{C}_{\mathbb{T}}$ has a universal model of \mathbb{T} denoted $\bm{M}_{\mathbb{T}}.$

• This arises from a canonical interpretation of $\mathbb T$ in $\mathscr C_{\mathbb T}.$

The syntactic category $\mathscr{C}_{\mathbb{T}}$ has a universal model of \mathbb{T} denoted $\bm{M}_{\mathbb{T}}.$

- This arises from a canonical interpretation of $\mathbb T$ in $\mathscr C_{\mathbb T}.$
- Each type A is interpreted as the object $\{x.\top\}$ with x of type A.

The syntactic category $\mathscr{C}_{\mathbb{T}}$ has a universal model of \mathbb{T} denoted $\boldsymbol{M}_{\mathbb{T}}.$

- This arises from a canonical interpretation of $\mathbb T$ in $\mathscr C_{\mathbb T}.$
- Each type A is interpreted as the object $\{x.\top\}$ with x of type A.
- Each function symbol $f: A_1, \ldots, A_n \rightarrow B$ is interpreted as the morphism

$$[f(x_1,\ldots,x_n)=y]\colon \{x_1,\ldots,x_n.\top\}\to \{y.\top\}.$$

The syntactic category $\mathscr{C}_{\mathbb{T}}$ has a universal model of \mathbb{T} denoted $M_{\mathbb{T}}$.

- This arises from a canonical interpretation of $\mathbb T$ in $\mathscr C_{\mathbb T}.$
- Each type A is interpreted as the object $\{x.\top\}$ with x of type A.
- Each function symbol $f: A_1, \ldots, A_n \rightarrow B$ is interpreted as the morphism

$$[f(x_1,\ldots,x_n)=y]\colon \{x_1,\ldots,x_n.\top\}\to \{y.\top\}.$$

Each relation symbol R → A₁,..., A_n is interpreted as a suitable subobject of {x₁,...x_n.⊤}.

The syntactic category $\mathscr{C}_{\mathbb{T}}$ has a universal model of \mathbb{T} denoted $M_{\mathbb{T}}$.

- This arises from a canonical interpretation of $\mathbb T$ in $\mathscr C_{\mathbb T}.$
- Each type A is interpreted as the object $\{x.\top\}$ with x of type A.
- Each function symbol $f: A_1, \ldots, A_n \rightarrow B$ is interpreted as the morphism

$$[f(x_1,\ldots,x_n)=y]\colon \{x_1,\ldots,x_n,\top\}\to \{y,\top\}.$$

- Each relation symbol R → A₁,..., A_n is interpreted as a suitable subobject of {x₁,...x_n.⊤}.
- A sequent $\phi \vdash \psi$ is provable in \mathbb{T} if, and only if, it is satisfied by $\mathbf{M}_{\mathbb{T}}$.

The Theory of Modules

Let \mathbb{T}_R denote the cartesian theory of R modules over a fixed ring R. This has a single sort A, various function symbols $+: A, A \rightarrow A$ and $-(-): A \rightarrow A$ and $r: A \rightarrow A$ indexed by $r \in R$ with group axioms

The Theory of Modules

Let \mathbb{T}_R denote the cartesian theory of R modules over a fixed ring R. This has a single sort A, various function symbols $+: A, A \rightarrow A$ and $-(-): A \rightarrow A$ and $r: A \rightarrow A$ indexed by $r \in R$ with group axioms

$$\top \vdash_{x,y,z} ((x + y) + z) = (x + (y + z))$$
$$\top \vdash_{x,y} (x + y) = (y + x)$$
$$\top \vdash_{x} (x + 0) = x$$
$$\top \vdash_{x} (x + (-x)) = 0$$

The Theory of Modules

Let \mathbb{T}_R denote the cartesian theory of R modules over a fixed ring R. This has a single sort A, various function symbols $+: A, A \to A$ and $-(-): A \to A$ and $r: A \to A$ indexed by $r \in R$ with group axioms

$$\top \vdash_{x,y,z} ((x+y)+z) = (x+(y+z))$$
$$\top \vdash_{x,y} (x+y) = (y+x)$$
$$\top \vdash_{x} (x+0) = x$$
$$\top \vdash_{x} (x+(-x)) = 0$$

and action axioms

$$\top \vdash_{x} rs(x) = r(s(x))$$

$$\top \vdash_{x} 1(x) = x$$

$$\top \vdash_{x} (r+s)x = r(x) + s(x)$$

$$\top \vdash_{x,y} r(x+y) = r(x) + r(y).$$

The Theory of Modules

Let \mathbb{T}_R denote the cartesian theory of R modules over a fixed ring R. This has a single sort A, various function symbols $+: A, A \to A$ and $-(-): A \to A$ and $r: A \to A$ indexed by $r \in R$ with group axioms

$$\top \vdash_{x,y,z} ((x+y)+z) = (x+(y+z))$$
$$\top \vdash_{x,y} (x+y) = (y+x)$$
$$\top \vdash_{x} (x+0) = x$$
$$\top \vdash_{x} (x+(-x)) = 0$$

and action axioms

$$\top \vdash_{x} rs(x) = r(s(x))$$

$$\top \vdash_{x} 1(x) = x$$

$$\top \vdash_{x} (r+s)x = r(x) + s(x)$$

$$\top \vdash_{x,y} r(x+y) = r(x) + r(y).$$

The category of **Set**-models is precisely *R*-Mod.

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic

Theorem The cartesian theory $\mathbb{T}_{k\langle X,Y\rangle}$ is undecidable.

Theorem

The cartesian theory $\mathbb{T}_{k\langle X, Y \rangle}$ is undecidable.

Let N = ⟨a, b | u₁ = v₁,..., u_r = v_r⟩ denote a finitely-presented monoid with undecidable word problem.

Theorem

The cartesian theory $\mathbb{T}_{k\langle X,Y\rangle}$ is undecidable.

- Let N = ⟨a, b | u₁ = v₁,..., u_r = v_r⟩ denote a finitely-presented monoid with undecidable word problem.
- Words over {a, b} are in bijection with words over {X, Y} under the correspondence a → X and b → Y.

Theorem

The cartesian theory $\mathbb{T}_{k\langle X,Y\rangle}$ is undecidable.

- Let N = ⟨a, b | u₁ = v₁,..., u_r = v_r⟩ denote a finitely-presented monoid with undecidable word problem.
- Words over {a, b} are in bijection with words over {X, Y} under the correspondence a → X and b → Y.
- Let f_i and g_i denote the images of u_i and v_i under this correspondence; and f and g those of arbitrary words u and v.

Theorem

The cartesian theory $\mathbb{T}_{k\langle X,Y\rangle}$ is undecidable.

- Let N = (a, b | u₁ = v₁,..., u_r = v_r) denote a finitely-presented monoid with undecidable word problem.
- Words over {a, b} are in bijection with words over {X, Y} under the correspondence a → X and b → Y.
- Let f_i and g_i denote the images of u_i and v_i under this correspondence; and f and g those of arbitrary words u and v.

The proof shows that the following statements (1) and (2) are equivalent (much as in [Bau75]).

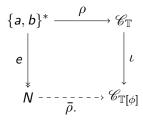
The words u and v over $\{a, b\}$ are equivalent in N. (1)

The sequent
$$\bigwedge_{i=1}^{r} (f_i(x) = g_i(x)) \vdash_x f(x) = g(x)$$
 is provable. (2)

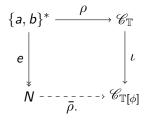
Let ϕ denote $\bigwedge_{i=1}^{r} (f_i(x) = g_i(x))$.

Let ϕ denote $\bigwedge_{i=1}^{r} (f_i(x) = g_i(x))$. Let \mathbb{T} denote the theory of $k\langle X, Y \rangle$ -modules and $\mathbb{T}[\phi]$ that obtained by adding $\top \vdash \phi$ as an axiom.

Let ϕ denote $\bigwedge_{i=1}^{r} (f_i(x) = g_i(x))$. Let \mathbb{T} denote the theory of $k\langle X, Y \rangle$ -modules and $\mathbb{T}[\phi]$ that obtained by adding $\top \vdash \phi$ as an axiom. The proof of $(1) \Rightarrow (2)$ produces a functor

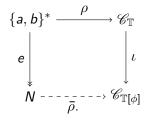


Let ϕ denote $\bigwedge_{i=1}^{r} (f_i(x) = g_i(x))$. Let \mathbb{T} denote the theory of $k\langle X, Y \rangle$ -modules and $\mathbb{T}[\phi]$ that obtained by adding $\top \vdash \phi$ as an axiom. The proof of $(1) \Rightarrow (2)$ produces a functor



which amounts to showing that $\mathscr{C}_{\mathbb{T}}$ interprets the undecidable word problem of N.

Let ϕ denote $\bigwedge_{i=1}^{r} (f_i(x) = g_i(x))$. Let \mathbb{T} denote the theory of $k\langle X, Y \rangle$ -modules and $\mathbb{T}[\phi]$ that obtained by adding $\top \vdash \phi$ as an axiom. The proof of $(1) \Rightarrow (2)$ produces a functor



which amounts to showing that $\mathscr{C}_{\mathbb{T}}$ interprets the undecidable word problem of *N*. On the other hand, assuming that (1) fails, the monoid-algebra k[N] can be seen to be a model of $\mathbb{T}_{k\langle X,Y\rangle}$ where (2) fails.

Representation Embeddings

If $\mathbb T$ is cartesian, let $\mathbb T\operatorname{\!-Mod}({\textbf{Set}})$ denote the category of models in ${\textbf{Set}}.$

Representation Embeddings

If $\mathbb T$ is cartesian, let $\mathbb T\operatorname{-Mod}(\mathsf{Set})$ denote the category of models in $\mathsf{Set}.$ Definition

A representation embedding of cartesian theories $\mathbb{T}_1 \to \mathbb{T}_2$ is a functor

 $E : \mathbb{T}_1 \operatorname{-Mod}(\operatorname{Set}) \to \mathbb{T}_2 \operatorname{-Mod}(\operatorname{Set})$

that preserves finitely-generated projective models, and that both preserves and reflects epimorphisms when restricted to the full subcategory of finitely-generated projectives.

The Main Theorem

Theorem

Let \mathbb{T}_1 and \mathbb{T}_2 denote cartesian theories admitting a representation embedding E. There is then a functor $T \colon \mathscr{C}_{\mathbb{T}_1} \to \mathscr{C}_{\mathbb{T}_2}$ that preserves and reflects provability in the sense that $\phi \vdash_{\mathbf{x}} \psi$ is provable in \mathbb{T}_1 if, and only if, the image sequent $\phi' \vdash_{\mathbf{y}} \psi'$ associated under T is provable in \mathbb{T}_2 .

An Idea of the Proof

An Idea of the Proof

Lemma

For a cartesian theory \mathbb{T} , a cartesian sequent $\phi \vdash_{\mathbf{x}} \psi$ is provable in \mathbb{T} if, and only if, $\{\mathbf{x}.\phi\} \leq \{\mathbf{x}.\psi\}$ holds as subobjects of $\{\mathbf{x}.\top\}$, that is, if, and only if, there is a monic arrow $\{\mathbf{x}.\phi\} \rightarrow \{\mathbf{x}.\psi\}$ of $\mathscr{C}_{\mathbb{T}}$.

An Idea of the Proof

Lemma

For a cartesian theory \mathbb{T} , a cartesian sequent $\phi \vdash_{\mathbf{x}} \psi$ is provable in \mathbb{T} if, and only if, $\{\mathbf{x}.\phi\} \leq \{\mathbf{x}.\psi\}$ holds as subobjects of $\{\mathbf{x}.\top\}$, that is, if, and only if, there is a monic arrow $\{\mathbf{x}.\phi\} \rightarrow \{\mathbf{x}.\psi\}$ of $\mathscr{C}_{\mathbb{T}}$.

This is proved in D1.4 of [Joh01].

An Idea of the Proof

Lemma

For a cartesian theory \mathbb{T} , a cartesian sequent $\phi \vdash_{\mathbf{x}} \psi$ is provable in \mathbb{T} if, and only if, $\{\mathbf{x}.\phi\} \leq \{\mathbf{x}.\psi\}$ holds as subobjects of $\{\mathbf{x}.\top\}$, that is, if, and only if, there is a monic arrow $\{\mathbf{x}.\phi\} \rightarrow \{\mathbf{x}.\psi\}$ of $\mathscr{C}_{\mathbb{T}}$. This is proved in D1.4 of [Joh01].

Lemma

For \mathscr{C} cartesian and Cauchy-complete, the finitely-generated projectives of $Cart(\mathscr{C}, Set)$ are precisely the representable functors.

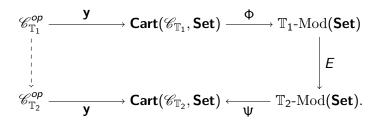
An Idea of the Proof

Lemma

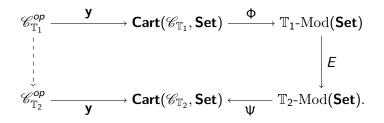
For a cartesian theory \mathbb{T} , a cartesian sequent $\phi \vdash_{\mathbf{x}} \psi$ is provable in \mathbb{T} if, and only if, $\{\mathbf{x}.\phi\} \leq \{\mathbf{x}.\psi\}$ holds as subobjects of $\{\mathbf{x}.\top\}$, that is, if, and only if, there is a monic arrow $\{\mathbf{x}.\phi\} \rightarrow \{\mathbf{x}.\psi\}$ of $\mathscr{C}_{\mathbb{T}}$. This is proved in D1.4 of [Joh01].

Lemma

For \mathscr{C} cartesian and Cauchy-complete, the finitely-generated projectives of $Cart(\mathscr{C}, Set)$ are precisely the representable functors. A full proof is in [Lam]. In the diagram Φ and Ψ are equivalences.

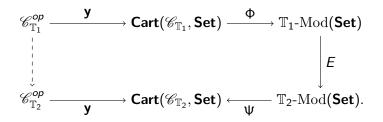


In the diagram Φ and Ψ are equivalences.



That E preserves finitely-generated projectives yield the functor in the dashed arrow.

In the diagram Φ and Ψ are equivalences.



That E preserves finitely-generated projectives yield the functor in the dashed arrow.

The induced functor $T: \mathscr{C}_{\mathbb{T}_1} \to \mathscr{C}_{\mathbb{T}_2}$ preserves and reflects provability by the completeness of cartesian logic and the assumed properties of E.

Corollaries to the Main Theorem

Corollary

If \mathbb{T}_1 is undecidable in the sense that there is no algorithm determining whether $\phi \vdash_{\mathbf{x}} \psi$ of \mathbb{T}_1 is provable, then \mathbb{T}_2 is also undecidable.

Corollaries to the Main Theorem

Corollary

If \mathbb{T}_1 is undecidable in the sense that there is no algorithm determining whether $\phi \vdash_{\mathbf{x}} \psi$ of \mathbb{T}_1 is provable, then \mathbb{T}_2 is also undecidable.

Proof.

If \mathbb{T}_2 were decidable, \mathcal{T} would provide an algorithm for \mathbb{T}_1 , contradicting undecidability.

Corollaries to the Main Theorem

Corollary

If \mathbb{T}_1 is undecidable in the sense that there is no algorithm determining whether $\phi \vdash_{\mathbf{x}} \psi$ of \mathbb{T}_1 is provable, then \mathbb{T}_2 is also undecidable.

Proof.

If \mathbb{T}_2 were decidable, \mathcal{T} would provide an algorithm for \mathbb{T}_1 , contradicting undecidability.

Corollary

Let S denote a wild k-algebra. The cartesian theory \mathbb{T}_S is then undecidable.

Corollaries to the Main Theorem

Corollary

If \mathbb{T}_1 is undecidable in the sense that there is no algorithm determining whether $\phi \vdash_{\mathbf{x}} \psi$ of \mathbb{T}_1 is provable, then \mathbb{T}_2 is also undecidable.

Proof.

If \mathbb{T}_2 were decidable, \mathcal{T} would provide an algorithm for \mathbb{T}_1 , contradicting undecidability.

Corollary

Let S denote a wild k-algebra. The cartesian theory \mathbb{T}_S is then undecidable.

Proof.

The functor $M \otimes_{k\langle X, Y \rangle} -$ is a representation embedding since M is a finitely-generated bimodule and free over $k\langle X, Y \rangle$.

Summary and Conclusion

Does The Theorem Prove the Original Conjecture?

In summary, the cartesian theory of $k\langle X, Y \rangle$ -module is undecidable.

Summary and Conclusion

Does The Theorem Prove the Original Conjecture?

In summary, the cartesian theory of $k\langle X, Y \rangle$ -module is undecidable. Any wild algebra also has an undecidable cartesian theory of modules. Summary and Conclusion

Does The Theorem Prove the Original Conjecture?

In summary, the cartesian theory of $k\langle X, Y \rangle$ -module is undecidable. Any wild algebra also has an undecidable cartesian theory of modules. But it is not yet clear that the analogous statements are true for the first-order theories.

W. Baur.

Decidability and undecidability of theories of abelian groups with predicates for subgroups.

Compositio Mathematica, (31):23–30, 1975.

P. T. Johnstone.

Sketches of an Elephant: A topos theory compendium, Vols. I, II. Clarendon Press, London, 2001.

M. Lambert.

Representation embeddings of cartesian theories. Preprint https://arxiv.org/abs/1612.02497.

M. Prest.

Model Theory and Modules.

London Mathematical Society Lecture Notes Series 130, Cambridge University Press, Cambridge, 1988.