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Introduction: Wild Algebras

A Conjecture

Let k denote an algebraically closed field. The free associative algebra
k〈X ,Y 〉 is known to have an undecidable classical first-order theory of
modules [Bau75],[Pre88].

Definition
A finite-dimensional algebra S over k is “wild” is there is a
finitely-generated (S , k〈X ,Y 〉)-bimodule M such that an induced tensor
functor

M ⊗k〈X ,Y 〉 − : k〈X ,Y 〉-mod→ S-mod

of categories of finite-dimensional modules reflects isomorphism and
preserves and reflects indecomposable modules.

Conjecture: Every wild finite-dimensional algebra has an undecidable
theory of modules [Pre88].
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Cartesian Logic

Algebraic and Cartesian Theories

Here the “wild implies undecidable” conjecture is reformulated in the
cartesian fragment of categorical logic.

A theory is given by its signature,
axioms and the sequents obtained as consequences under a specified
notion of derivability.

• A Horn theory uses only ‘∧’ and ‘>’. Algebraic theories are Horn.

• A Regular theory is Horn allowing ‘∃’.

• Cartesian formulas are defined inductively: atomic formulas and finite
conjunctions of cartesian formulas are cartesian. ‘x .∃yφ’ is cartesian
provided that x , y .φ is cartesian and a certain sequent is provable.

• A regular theory is cartesian if its axioms admit a partial order in
which any given axiom is cartesian relative to the subtheory generated
by the axioms preceding it in the order.
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Cartesian Logic

Syntactic Categories
Associated to any cartesian theory T is its syntactic category CT.

• Objects: α-equivalence classes of formulas-in-context {x.φ} with φ
cartesian.

• Arrows: classes [θ] : {x.φ} → {y.ψ} of T-provably-equivalent
cartesian formulas θ that are T-provably functional:

θ `x,y φ ∧ ψ
θ ∧ θ[z/y] `x,y,z y = z

φ `x ∃yθ.

The syntactic category CT is cartesian, Cauchy-complete, and has a
universal property.

Theorem
For any cartesian theory T and any cartesian category D , there is an
equivalence

Cart(CT,D) ' T-Mod(D).

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 5 / 15



Cartesian Logic

Syntactic Categories
Associated to any cartesian theory T is its syntactic category CT.

• Objects: α-equivalence classes of formulas-in-context {x.φ} with φ
cartesian.

• Arrows: classes [θ] : {x.φ} → {y.ψ} of T-provably-equivalent
cartesian formulas θ that are T-provably functional:

θ `x,y φ ∧ ψ
θ ∧ θ[z/y] `x,y,z y = z

φ `x ∃yθ.

The syntactic category CT is cartesian, Cauchy-complete, and has a
universal property.

Theorem
For any cartesian theory T and any cartesian category D , there is an
equivalence

Cart(CT,D) ' T-Mod(D).

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 5 / 15



Cartesian Logic

Syntactic Categories
Associated to any cartesian theory T is its syntactic category CT.

• Objects: α-equivalence classes of formulas-in-context {x.φ} with φ
cartesian.

• Arrows: classes [θ] : {x.φ} → {y.ψ} of T-provably-equivalent
cartesian formulas θ that are T-provably functional:

θ `x,y φ ∧ ψ
θ ∧ θ[z/y] `x,y,z y = z

φ `x ∃yθ.

The syntactic category CT is cartesian, Cauchy-complete, and has a
universal property.

Theorem
For any cartesian theory T and any cartesian category D , there is an
equivalence

Cart(CT,D) ' T-Mod(D).

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 5 / 15



Cartesian Logic

Syntactic Categories
Associated to any cartesian theory T is its syntactic category CT.

• Objects: α-equivalence classes of formulas-in-context {x.φ} with φ
cartesian.

• Arrows: classes [θ] : {x.φ} → {y.ψ} of T-provably-equivalent
cartesian formulas θ that are T-provably functional:

θ `x,y φ ∧ ψ
θ ∧ θ[z/y] `x,y,z y = z

φ `x ∃yθ.

The syntactic category CT is cartesian, Cauchy-complete, and has a
universal property.

Theorem
For any cartesian theory T and any cartesian category D , there is an
equivalence

Cart(CT,D) ' T-Mod(D).

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 5 / 15



Cartesian Logic

Syntactic Categories
Associated to any cartesian theory T is its syntactic category CT.

• Objects: α-equivalence classes of formulas-in-context {x.φ} with φ
cartesian.

• Arrows: classes [θ] : {x.φ} → {y.ψ} of T-provably-equivalent
cartesian formulas θ that are T-provably functional:

θ `x,y φ ∧ ψ
θ ∧ θ[z/y] `x,y,z y = z

φ `x ∃yθ.

The syntactic category CT is cartesian, Cauchy-complete, and has a
universal property.

Theorem
For any cartesian theory T and any cartesian category D , there is an
equivalence

Cart(CT,D) ' T-Mod(D).

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 5 / 15



Cartesian Logic

The syntactic category CT has a universal model of T denoted MT.

• This arises from a canonical interpretation of T in CT.

• Each type A is interpreted as the object {x .>} with x of type A.

• Each function symbol f : A1, . . . ,An → B is interpreted as the
morphism

[f (x1, . . . , xn) = y ] : {x1, . . . , xn.>} → {y .>}.

• Each relation symbol R � A1, . . . ,An is interpreted as a suitable
subobject of {x1, . . . xn.>}.

• A sequent φ ` ψ is provable in T if, and only if, it is satisfied by MT.

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 6 / 15



Cartesian Logic

The syntactic category CT has a universal model of T denoted MT.

• This arises from a canonical interpretation of T in CT.

• Each type A is interpreted as the object {x .>} with x of type A.

• Each function symbol f : A1, . . . ,An → B is interpreted as the
morphism

[f (x1, . . . , xn) = y ] : {x1, . . . , xn.>} → {y .>}.

• Each relation symbol R � A1, . . . ,An is interpreted as a suitable
subobject of {x1, . . . xn.>}.

• A sequent φ ` ψ is provable in T if, and only if, it is satisfied by MT.

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 6 / 15



Cartesian Logic

The syntactic category CT has a universal model of T denoted MT.

• This arises from a canonical interpretation of T in CT.

• Each type A is interpreted as the object {x .>} with x of type A.

• Each function symbol f : A1, . . . ,An → B is interpreted as the
morphism

[f (x1, . . . , xn) = y ] : {x1, . . . , xn.>} → {y .>}.

• Each relation symbol R � A1, . . . ,An is interpreted as a suitable
subobject of {x1, . . . xn.>}.

• A sequent φ ` ψ is provable in T if, and only if, it is satisfied by MT.

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 6 / 15



Cartesian Logic

The syntactic category CT has a universal model of T denoted MT.

• This arises from a canonical interpretation of T in CT.

• Each type A is interpreted as the object {x .>} with x of type A.

• Each function symbol f : A1, . . . ,An → B is interpreted as the
morphism

[f (x1, . . . , xn) = y ] : {x1, . . . , xn.>} → {y .>}.

• Each relation symbol R � A1, . . . ,An is interpreted as a suitable
subobject of {x1, . . . xn.>}.

• A sequent φ ` ψ is provable in T if, and only if, it is satisfied by MT.

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 6 / 15



Cartesian Logic

The syntactic category CT has a universal model of T denoted MT.

• This arises from a canonical interpretation of T in CT.

• Each type A is interpreted as the object {x .>} with x of type A.

• Each function symbol f : A1, . . . ,An → B is interpreted as the
morphism

[f (x1, . . . , xn) = y ] : {x1, . . . , xn.>} → {y .>}.

• Each relation symbol R � A1, . . . ,An is interpreted as a suitable
subobject of {x1, . . . xn.>}.

• A sequent φ ` ψ is provable in T if, and only if, it is satisfied by MT.

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 6 / 15



Cartesian Logic

The syntactic category CT has a universal model of T denoted MT.

• This arises from a canonical interpretation of T in CT.

• Each type A is interpreted as the object {x .>} with x of type A.

• Each function symbol f : A1, . . . ,An → B is interpreted as the
morphism

[f (x1, . . . , xn) = y ] : {x1, . . . , xn.>} → {y .>}.

• Each relation symbol R � A1, . . . ,An is interpreted as a suitable
subobject of {x1, . . . xn.>}.

• A sequent φ ` ψ is provable in T if, and only if, it is satisfied by MT.

Michael Lambert (Dalhousie University) Wild Algebras in Cartesian Categorical Logic 30 July 2017 6 / 15



An Undecidable Theory

The Theory of Modules
Let TR denote the cartesian theory of R modules over a fixed ring R. This
has a single sort A, various function symbols +: A,A→ A and
−(−) : A→ A and r : A→ A indexed by r ∈ R with group axioms

> `x ,y ,z ((x + y) + z) = (x + (y + z))

> `x ,y (x + y) = (y + x)

> `x (x + 0) = x

> `x (x + (−x)) = 0

and action axioms

> `x rs(x) = r(s(x))

> `x 1(x) = x

> `x (r + s)x = r(x) + s(x)

> `x ,y r(x + y) = r(x) + r(y).

The category of Set-models is precisely R-Mod.
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An Undecidable Theory

Theorem
The cartesian theory Tk〈X ,Y 〉 is undecidable.

• Let N = 〈a, b | u1 = v1, . . . , ur = vr 〉 denote a finitely-presented
monoid with undecidable word problem.

• Words over {a, b} are in bijection with words over {X ,Y } under the
correspondence a 7→ X and b 7→ Y .

• Let fi and gi denote the images of ui and vi under this
correspondence; and f and g those of arbitrary words u and v .

The proof shows that the following statements (1) and (2) are equivalent
(much as in [Bau75]).

The words u and v over {a, b} are equivalent in N. (1)

The sequent
r∧

i=1

(fi (x) = gi (x)) `x f (x) = g(x) is provable. (2)
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An Undecidable Theory

Let φ denote
∧r

i=1(fi (x) = gi (x)).

Let T denote the theory of
k〈X ,Y 〉-modules and T[φ] that obtained by adding > ` φ as an axiom.
The proof of (1) ⇒ (2) produces a functor

{a, b}∗ CT

N CT[φ]

ρ

ιe

ρ̄.

which amounts to showing that CT interprets the undecidable word
problem of N. On the other hand, assuming that (1) fails, the
monoid-algebra k[N] can be seen to be a model of Tk〈X ,Y 〉 where (2) fails.
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Representation Embeddings

Representation Embeddings

If T is cartesian, let T-Mod(Set) denote the category of models in Set.

Definition
A representation embedding of cartesian theories T1 → T2 is a functor

E : T1-Mod(Set)→ T2-Mod(Set)

that preserves finitely-generated projective models, and that both preserves
and reflects epimorphisms when restricted to the full subcategory of
finitely-generated projectives.
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Representation Embeddings

The Main Theorem

Theorem
Let T1 and T2 denote cartesian theories admitting a representation
embedding E. There is then a functor T : CT1 → CT2 that preserves and
reflects provability in the sense that φ `x ψ is provable in T1 if, and only
if, the image sequent φ′ `y ψ′ associated under T is provable in T2.
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Representation Embeddings

An Idea of the Proof

Lemma
For a cartesian theory T, a cartesian sequent φ `x ψ is provable in T if,
and only if, {x.φ} ≤ {x.ψ} holds as subobjects of {x.>}, that is, if, and
only if, there is a monic arrow {x.φ} → {x.ψ} of CT.

This is proved in D1.4 of [Joh01].

Lemma
For C cartesian and Cauchy-complete, the finitely-generated projectives of
Cart(C ,Set) are precisely the representable functors.

A full proof is in [Lam].
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Representation Embeddings

In the diagram Φ and Ψ are equivalences.

C op
T1

Cart(CT1 ,Set)

C op
T2

Cart(CT2 ,Set)

T1-Mod(Set)

T2-Mod(Set).

y

E

y

Φ

Ψ

That E preserves finitely-generated projectives yield the functor in the
dashed arrow.
The induced functor T : CT1 → CT2 preserves and reflects provability by
the completeness of cartesian logic and the assumed properties of E .
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Representation Embeddings

Corollaries to the Main Theorem

Corollary

If T1 is undecidable in the sense that there is no algorithm determining
whether φ `x ψ of T1 is provable, then T2 is also undecidable.

Proof.
If T2 were decidable, T would provide an algorithm for T1, contradicting
undecidability.

Corollary

Let S denote a wild k-algebra. The cartesian theory TS is then
undecidable.

Proof.
The functor M ⊗k〈X ,Y 〉 − is a representation embedding since M is a
finitely-generated bimodule and free over k〈X ,Y 〉.
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Summary and Conclusion

Does The Theorem Prove the Original Conjecture?

In summary, the cartesian theory of k〈X ,Y 〉-module is undecidable.

Any wild algebra also has an undecidable cartesian theory of modules.
But it is not yet clear that the analogous statements are true for the
first-order theories.
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