An approach to parts of d-frames and an Isbell-type density theorem

Imanol Mozo Carollo¹

imanol.mozo@ehu.es

Chapman University & University of the Basque Country UPV/EHU

¹Joint work with Andrew Moshier and Joanne Walters-Wayland

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

• *L*₋ and *L*₊ are frames

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$
- tot $\subseteq L_- \times L_+$

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$
- tot $\subseteq L_- \times L_+$

satisfying

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$

satisfying

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$ (φ con a "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (*a* tot φ "morally" is $a \lor \varphi = 1$)

satisfying

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$ (φ con a "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (*a* tot φ "morally" is $a \lor \varphi = 1$)

satisfying

1 con is a down-set in $L_+ \times L_-$,

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$ (φ con a "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

- 1 con is a down-set in $L_+ \times L_-$,
- 2 con is a bounded sublattice of $L_+ \times L_-^{op}$,

(con-↓) (con-∨ & con-∧)

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$ (φ con a "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

1 con is a down-set in $L_+ \times L_-$,(con- \downarrow)2 con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& con-\land$)3 tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$ (φ con a "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

- **1** con is a down-set in $L_+ \times L_-$, (con-↓) **2** con is a bounded sublattice of $L_+ \times L^{op}_-$, (con-√ & con-∧)
 - **3** tot is an upper-set in $L_- \times L_+$,

4 tot is an bounded sublattice of $L_{-}^{op} \times L_{+}$,

(con-↓) (con-∨ & con-∧) (tot-↑) (tot-∨ & tot-∧)

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- *L*₋ and *L*₊ are frames
- con $\subseteq L_+ \times L_-$ (φ con a "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

1 con is a down-set in $L_+ \times L_-$,(con- \downarrow)2 con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& \text{ con-}\land$)3 tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)4 tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\lor \& \text{ tot-}\land$)5 con; tot $\subseteq \leq_{L_+}$ (con-tot)

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (*a* tot φ "morally" is $a \lor \varphi = 1$)

satisfying

1 con is a down-set in $L_+ \times L_-$,(con- \downarrow)2 con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& con-\land$)3 tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)4 tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\lor \& tot-\land$)5 con; tot $\subseteq \leq_{L_+}$ (con-tot)

Motivation $\varphi \operatorname{con} a \operatorname{tot} \psi$

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

• con is a down-set in $L_+ \times L_-$,(con- \downarrow)• con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& con-\land$)• tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)• tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\lor \& tot-\land$)• con; tot $\subseteq \leq_{L_+}$ (con-tot)

Motivation

 $\varphi \operatorname{con} a \operatorname{tot} \psi$ morally is $\varphi \wedge a = 0$ and $a \vee \psi = 1$, that is,

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

• con is a down-set in $L_+ \times L_-$,(con- \downarrow)• con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& con-\land$)• tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)• tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\lor \& tot-\land$)• con; tot $\subseteq \leq_{L_+}$ (con-tot)

Motivation

 $\varphi \operatorname{con} a \operatorname{tot} \psi$ morally is $\varphi \wedge a = 0 \operatorname{and} a \lor \psi = 1$, that is,

 $\varphi\prec\psi$

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (*a* tot φ "morally" is $a \lor \varphi = 1$)

satisfying

• con is a down-set in $L_+ \times L_-$,(con- \downarrow)• con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& \operatorname{con-} \land$)• tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)• tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\lor \& \operatorname{tot-} \land$)• con; tot $\subseteq \leq_{L_+}$ and con^{-1} ; tot⁻¹ $\subseteq \leq_{L_-}$,(con-tot)

Motivation

 $\varphi \operatorname{con} a \operatorname{tot} \psi$ morally is $\varphi \wedge a = 0$ and $a \vee \psi = 1$, that is,

 $\varphi\prec\psi$

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

1 con is a down-set in $L_+ \times L_-$,(con- \downarrow)**2** con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& con-\land$)**3** tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)**4** tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\lor \& tot-\land$)**5** con; tot $\subseteq \leq_{L_+}$ and con⁻¹; tot⁻¹ $\subseteq \leq_{L_-}$,(con-tot)**6** con is closed under directed joins.

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

• con is a down-set in $L_+ \times L_-$,(con- \downarrow)• con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& con-\land$)• tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)• tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\checkmark \& tot-\land$)• con; tot $\subseteq \leq_{L_+}$ and con⁻¹; tot⁻¹ $\subseteq \leq_{L_-}$,(con-tot)• con is closed under directed joins.(con-tot)

Motivation

We want have pseudocomplements:

$$\varphi^{\bullet} := \bigvee \{ a \in L_{-} \mid \varphi \operatorname{con} a \}$$
 such that $\varphi \operatorname{con} \varphi^{\bullet}$

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

1 con is a down-set in $L_+ \times L_-$,(con- \downarrow)**2** con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& con-\land$)**3** tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)**4** tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\lor \& tot-\land$)**5** con; tot $\subseteq \leq_{L_+}$ and con⁻¹; tot⁻¹ $\subseteq \leq_{L_-}$,(con-tot)**6** con is closed under directed joins.

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

• con is a down-set in $L_+ \times L_-$,(con- \downarrow)• con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& \text{ con-} \land$)• tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)• tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- \uparrow)• con; tot $\subseteq \leq_{L_+}$ and con⁻¹; tot⁻¹ $\subseteq \leq_{L_-}$,(con-tot)• con is closed under directed joins.(con- \downarrow)

A *d*-frame homomorphism $f: L \rightarrow M$ is a pair of frame homomorphisms

 $f_-: L_- \to M_-$ and $f_+: L_+ \to M_+$

that preserves the relations con and tot.

A *d*-frame is a structure $L = (L_{-}, L_{+}, \text{con}, \text{tot})$ where

- L₋ and L₊ are frames
- $\operatorname{con} \subseteq L_+ \times L_-$ ($\varphi \operatorname{con} a$ "morally" is $\varphi \wedge a = 0$)
- tot $\subseteq L_- \times L_+$ (a tot φ "morally" is $a \lor \varphi = 1$)

satisfying

• con is a down-set in $L_+ \times L_-$,(con- \downarrow)• con is a bounded sublattice of $L_+ \times L_-^{op}$,(con- $\lor \& con-\land$)• tot is an upper-set in $L_- \times L_+$,(tot- \uparrow)• tot is an bounded sublattice of $L_-^{op} \times L_+$,(tot- $\checkmark \& tot-\land$)• con; tot $\subseteq \leq_{L_+}$ and con⁻¹; tot⁻¹ $\subseteq \leq_{L_-}$,(con-tot)• con is closed under directed joins.(con-tot)

A. Jung and A. Moshier,

On the bitopological nature of Stone duality,

Technical Report CSR-06-13, The University of Birmingham, 110 pp. (2006).

Lemma

Monomorphisms in **Frm** are precisely one-one frame homomorphims.

Lemma

Monomorphisms in **Frm** are precisely one-one frame homomorphims.

Lemma

Let $f: L \to M$. Then f[L] is a subframe of M

Lemma

Monomorphisms in Frm are precisely one-one frame homomorphims.

Lemma

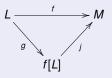
Let $f: L \rightarrow M$. Then f[L] is a subframe of M and f factors through it:

Lemma

Monomorphisms in Frm are precisely one-one frame homomorphims.

Lemma

Let $f: L \to M$. Then f[L] is a subframe of M and f factors through it:



Proposition

Extremal epis in Frm are precisely the onto frame homomorphisms.

Proposition

Extremal epis in Frm are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism.

Proposition

Extremal epis in Frm are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi.

Proposition

Extremal epis in Frm are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mg with m a mono,

Proposition

Extremal epis in Frm are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mg with m a mono, then m is one-one

Proposition

Extremal epis in Frm are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mg with m a mono, then m is one-one and onto,

Proposition

Extremal epis in Frm are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mg with m a mono, then m is one-one and onto, so it is an isomorphism.

Proposition

Extremal epis in **Frm** are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mg with m a mono, then m is one-one and onto, so it is an isomorphism.

If $f: L \to M$ is not onto,

Proposition

Extremal epis in **Frm** are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mg with m a mono, then m is one-one and onto, so it is an isomorphism.

If $f: L \to M$ is not onto, simply take the decomposition f = jg from the previous lemma,

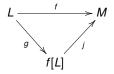
Proposition

Extremal epis in **Frm** are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mg with m a mono, then m is one-one and onto, so it is an isomorphism.

If $f: L \to M$ is not onto, simply take the decomposition f = jg from the previous lemma,



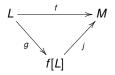
Proposition

Extremal epis in **Frm** are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mq with m a mono, then m is one-one and onto, so it is an isomorphism.

If $f: L \to M$ is not onto, simply take the decomposition f = jg from the previous lemma,



with *j* a non-isomorphic mono.

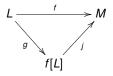
Proposition

Extremal epis in **Frm** are precisely the onto frame homomorphisms.

Proof.

Let $f: L \to M$ be a onto frame homomorphism. First note that f is obviously epi. If f = mg with m a mono, then m is one-one and onto, so it is an isomorphism.

If $f: L \to M$ is not onto, simply take the decomposition f = jg from the previous lemma,



with *j* a non-isomorphic mono.

J. Picado and A Pultr,

Frames and locales: Topology without points,

Frontiers in Mathematics 28 Springer-Basel (2012).

Lemma

f is a mono in **dFrm** iff f_{-} and f_{+} are monos in **Frm**.

Lemma

f is a mono in **dFrm** iff f_{-} and f_{+} are monos in **Frm**.

Lemma

Let $f: L \rightarrow M$ be a d-frame homomorphism.

Lemma

f is a mono in **dFrm** iff f_{-} and f_{+} are monos in **Frm**.

Lemma

Let $f: L \rightarrow M$ be a d-frame homomorphism. Then

 $f[L] = (f_{-}(L_{-}), f_{+}(L_{+}), \overline{f(\operatorname{con}_{L})}, f(\operatorname{tot}_{L})),$

where $\overline{f(con_L)}$ is the Scott-closure of $f(con_L)$, is a d-frame.

Lemma

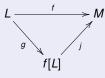
f is a mono in **dFrm** iff f_{-} and f_{+} are monos in **Frm**.

Lemma

Let $f: L \rightarrow M$ be a d-frame homomorphism. Then

$$f[L] = (f_{-}(L_{-}), f_{+}(L_{+}), \overline{f(\operatorname{con}_{L})}, f(\operatorname{tot}_{L})),$$

where $\overline{f(con_L)}$ is the Scott-closure of $f(con_L)$, is a d-frame. Further, f factors through it:



Proposition

Extremal epis in **dFrm** are those d-frame homomorphisms $f: L \rightarrow M$ such that

Proposition

Extremal epis in dFrm are those d-frame homomorphisms $f: L \to M$ such that

• f_{-} and f_{+} are extremal epis in **Frm**,

Proposition

Extremal epis in dFrm are those d-frame homomorphisms $f: L \rightarrow M$ such that

- *f*₋ and *f*₊ are extremal epis in **Frm**,
- f(con_L) is dense in con_M (endowed with the Scott topology) and

Proposition

Extremal epis in dFrm are those d-frame homomorphisms $f: L \rightarrow M$ such that

- *f*₋ and *f*₊ are extremal epis in **Frm**,
- f(con_L) is dense in con_M (endowed with the Scott topology) and
- $f(tot_L) = tot_M$.

Proposition

Extremal epis in dFrm are those d-frame homomorphisms $f: L \rightarrow M$ such that

- *f*₋ and *f*₊ are extremal epis in **Frm**,
- f(con_L) is dense in con_M (endowed with the Scott topology) and
- $f(tot_L) = tot_M$.

Perception

It is really hard to find examples.

Extremal epis as pairs of sublocales

As extremal epis in ${\bf Frm}$ can be represented uniquely by sublocale sets, we can represent an extremal epi in ${\bf dFrm}$

$$h: L \to M$$

as a pair of sublocales $S_{-} \in S(L_{-})$ and $S_{+} \in S(L_{+})$ endowed with con_{S} and tot_{S} relations induced by those of M (as $S_{-} \simeq M_{-}$ and $S_{+} \simeq M_{+}$).

Extremal epis as pairs of sublocales

As extremal epis in ${\bf Frm}$ can be represented uniquely by sublocale sets, we can represent an extremal epi in ${\bf dFrm}$

$$h: L \to M$$

as a pair of sublocales $S_{-} \in S(L_{-})$ and $S_{+} \in S(L_{+})$ endowed with con_S and tot_S relations induced by those of M (as $S_{-} \simeq M_{-}$ and $S_{+} \simeq M_{+}$).

Lemma

In that case,

 $tot_{\mathcal{S}} = tot_{\mathcal{L}} \cap \mathcal{S}.$

Definition

We will say that a d-frame homomorphism $f: L \rightarrow M$ is *dense* if

 $f_+(\varphi) \operatorname{con}_M f_-(a) \implies \varphi \operatorname{con}_L a$

Definition

We will say that a d-frame homomorphism $f: L \rightarrow M$ is *dense* if

 $f_+(\varphi) \operatorname{con}_M f_-(a) \implies \varphi \operatorname{con}_L a$

If $f: L \to M$ is dense then f_- and f_+ are dense.

Definition

We will say that a d-frame homomorphism $f: L \rightarrow M$ is *dense* if

 $f_+(\varphi) \operatorname{con}_M f_-(a) \implies \varphi \operatorname{con}_L a$

If $f: L \to M$ is dense then f_- and f_+ are dense. The reciprocal does not hold.

Definition

We will say that a d-frame homomorphism $f: L \rightarrow M$ is *dense* if

$$f_+(\varphi) \operatorname{con}_M f_-(a) \implies \varphi \operatorname{con}_L a$$

If $f: L \to M$ is dense then f_- and f_+ are dense. The reciprocal does not hold.

Lemma

Let $h: L \to S$ be a dense extremal epi given by sublocales $S_- \in S(L_-)$ and $S_+ \in S(L_+)$. Then:

Definition

We will say that a d-frame homomorphism $f: L \rightarrow M$ is *dense* if

$$f_+(\varphi) \operatorname{con}_M f_-(a) \implies \varphi \operatorname{con}_L a$$

If $f: L \to M$ is dense then f_- and f_+ are dense. The reciprocal does not hold.

Lemma

Let h: $L \to S$ be a dense extremal epi given by sublocales $S_- \in S(L_-)$ and $S_+ \in S(L_+)$. Then:

 $on_{S} = \operatorname{con}_{L} \cap S.$

Definition

We will say that a d-frame homomorphism $f: L \rightarrow M$ is *dense* if

$$f_+(\varphi) \operatorname{con}_M f_-(a) \implies \varphi \operatorname{con}_L a$$

If $f: L \to M$ is dense then f_- and f_+ are dense. The reciprocal does not hold.

Lemma

Let $h: L \to S$ be a dense extremal epi given by sublocales $S_- \in S(L_-)$ and $S_+ \in S(L_+)$. Then:

- $1 \, \operatorname{con}_{S} = \operatorname{con}_{L} \cap S.$
- 2 $L_{-}^{\bullet\bullet} \subseteq S_{-}$ and $L_{+}^{\bullet\bullet} \subseteq S_{+}$.

Proposition

Let $S_{-} \in S(L_{-})$ and $S_{+} \in S(L_{+})$ such that $L_{-}^{\bullet \bullet} \subseteq S_{-}$ and $L_{+}^{\bullet \bullet} \subseteq S_{+}$.

Proposition

Let $S_{-} \in S(L_{-})$ and $S_{+} \in S(L_{+})$ such that $L_{-}^{\bullet \bullet} \subseteq S_{-}$ and $L_{+}^{\bullet \bullet} \subseteq S_{+}$. Then

$$S = (S_-, S_+, \operatorname{con}_L \cap S, \operatorname{tot}_L \cap S)$$

is a d-frame

Proposition

Let
$$S_{-} \in S(L_{-})$$
 and $S_{+} \in S(L_{+})$ such that $L_{-}^{\bullet \bullet} \subseteq S_{-}$ and $L_{+}^{\bullet \bullet} \subseteq S_{+}$. Then

$$S = (S_-, S_+, \operatorname{con}_L \cap S, \operatorname{tot}_L \cap S)$$

is a d-frame and $q: L \rightarrow S$ is a dense extremal epi given by the frame quotients

 $q_-: L_- \rightarrow S_-$ and $q_+: L_+ \rightarrow S_+$.

Proposition

Let
$$S_{-} \in S(L_{-})$$
 and $S_{+} \in S(L_{+})$ such that $L_{-}^{\bullet \bullet} \subseteq S_{-}$ and $L_{+}^{\bullet \bullet} \subseteq S_{+}$. Then

$$S = (S_-, S_+, \operatorname{con}_L \cap S, \operatorname{tot}_L \cap S)$$

is a d-frame and $q: L \rightarrow S$ is a dense extremal epi given by the frame quotients

$$q_-: L_- \rightarrow S_-$$
 and $q_+: L_+ \rightarrow S_+$.

Corollary

An extremal epi $h: L \to S$ that is given by sublocales is dense iff $L_{-}^{\bullet \bullet} \subseteq S_{-}$ and $L_{+}^{\bullet \bullet} \subseteq S_{+}$.

Proposition

Let
$$S_{-} \in S(L_{-})$$
 and $S_{+} \in S(L_{+})$ such that $L_{-}^{\bullet \bullet} \subseteq S_{-}$ and $L_{+}^{\bullet \bullet} \subseteq S_{+}$. Then

$$S = (S_-, S_+, \operatorname{con}_L \cap S, \operatorname{tot}_L \cap S)$$

is a d-frame and $q: L \rightarrow S$ is a dense extremal epi given by the frame quotients

$$q_-: L_- \rightarrow S_-$$
 and $q_+: L_+ \rightarrow S_+$.

Corollary

An extremal epi $h: L \to S$ that is given by sublocales is dense iff $L_{-}^{\bullet \bullet} \subseteq S_{-}$ and $L_{+}^{\bullet \bullet} \subseteq S_{+}$.

Theorem

Each d-frame has a least dense extremal epi.

Eskerrik asko arretarengatik!

Thank you for your attention!

Děkuji za pozornost!

imanol.mozo@ehu.eus

Eskerrik asko arretarengatik! (This is Basque)

Thank you for your attention!

Děkuji za pozornost! (... and I hope this is proper Czech)

imanol.mozo@ehu.eus