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A d-frame homomorphism f: L — M is a pair of frame homomorphisms

fo:L-— M- and f+: L+ — M+

that preserves the relations con and tot.
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B A. Jung and A. Moshier,
On the bitopological nature of Stone duality,
Technical Report CSR-06-13, The University of Birmingham, 110 pp. (2006).
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Proof.
Let f: L — M be a onto frame homomorphism. First note that f is obviously epi.
If f = mg with m a mono, then m is one-one and onto, so it is an isomorphism.

If f: L — M is not onto,
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with j a non-isomorphic mono.

@ J. Picado and A Pultr,
Frames and locales: Topology without points,
Frontiers in Mathematics 28 Springer—Basel (2012).
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where f(con,) is the Scott-closure of f(con.), is a d-frame.
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Letf: L — M be a d-frame homomorphism. Then
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where f(con,) is the Scott-closure of f(con,), is a d-frame. Further, f factors through it:
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Extremal epis in dFrm

Proposition

Extremal epis in dFrm are those d-frame homomorphisms f: L — M such that
e f_ andf; are extremal epis in Frm,
e f(con.) is dense in cony (endowed with the Scott topology) and
o f(tot,) = totwy.

Perception
It is really hard to find examples.
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Extremal epis as pairs of sublocales

As extremal epis in Frm can be represented uniquely by sublocale sets, we can
represent an extremal epi in dFrm

h:L—-M

as a pair of sublocales S_ € S(L-) and S; € S(L;) endowed with cons and tots
relations induced by those of M (as S_ ~ M_ and S, ~ M,).
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h:L—-M

as a pair of sublocales S_ € S(L-) and S; € S(L;) endowed with cons and tots
relations induced by those of M (as S_ ~ M_ and S, ~ M,).
Lemma

In that case,
tots = tot, NnS.
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An Isbell-type density theorem

Definition
We will say that a d-frame homomorphism f : L — M is dense if

fr(p)conyf-(a) = pcon.a
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Definition
We will say that a d-frame homomorphism f : L — M is dense if

fr(p)conuyf_(a) = pcon,a

If f: L — Mis dense then f_ and f; are dense. The reciprocal does not hold.

Lemma

Leth: L — S be a dense extremal epi given by sublocales S_ € S(L_) and
Sy € S(Ly). Then:
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Leth: L — S be a dense extremal epi given by sublocales S_ € S(L_) and
Sy € S(Ly). Then:

@ cons =con;. NS.
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We will say that a d-frame homomorphism f : L — M is dense if

fr(p)conuyf_(a) = pcon,a

If f: L — Mis dense then f_ and f; are dense. The reciprocal does not hold.

Lemma

Leth: L — S be a dense extremal epi given by sublocales S_ € S(L_) and
Sy € S(Ly). Then:

@ cons =con;. NS.
®L*CS andl?* CS..
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An Isbell density theorem
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An Isbell density theorem

Proposition
LetS_ € S(L-) and S; € S(L;) suchthat L** C S_ and L$®* C S;.
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An Isbell density theorem

Proposition
LetS_ € S(L-) and S; € S(L+) suchthat L** C S_ and L$®* C S;. Then
S=(S_,S;,con.NS,tot, NS)

is a d-frame
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An Isbell density theorem

Proposition
LetS_ € S(L-) and S; € S(L+) suchthat L** C S_ and L$®* C S;. Then

S=(S_,S;,con.NS,tot, NS)
is a d-frame and q: L — S is a dense extremal epi given by the frame quotients

g-:L-—-S_ and qi: Ly — S;:.
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LetS_ € S(L-) and S; € S(L+) suchthat L** C S_ and L$®* C S;. Then

S=(S_,S;,con.NS,tot, NS)
is a d-frame and q: L — S is a dense extremal epi given by the frame quotients

g-:L-—-S_ and qi: Ly — S;:.

Corollary

An extremal epi h: L — S that is given by sublocales is dense iff L** C S_ and
LS* C S;.
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An Isbell density theorem

Proposition
LetS_ € S(L-) and S; € S(L+) suchthat L** C S_ and L$®* C S;. Then

S=(S_,S;,con.NS,tot, NS)
is a d-frame and q: L — S is a dense extremal epi given by the frame quotients

g-:L-—-S_ and qi: Ly — S;:.

Corollary

An extremal epi h: L — S that is given by sublocales is dense iff L** C S_ and
LS* C S;.

Theorem
Each d-frame has a least dense extremal epi.
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I. Mozo Carollo (Chapman & UPV/EHU)

Eskerrik asko arretarengatik!

Thank you for your attention!

Dékuji za pozornost!

imanol.mozolehu.eus
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imanol.mozo@ehu.eus

Eskerrik asko arretarengatik!
(This is Basque)

Thank you for your attention!

Dékuji za pozornost!
(... and I hope this is proper Czech)

imanol.mozolehu.eus
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