First-order logic properly displayed

Apostolos Tzimoulis
joint work with S. Balco, G. Greco, A. Kurz, M. A. Moshier, and
A. Palmigiano

TACL 2017, Prague

Starting point: Display Calculi

- Natural generalization of Gentzen's sequent calculi;
- sequents $X \vdash Y$, where X and Y are structures:
- formulas are atomic structures
- built-up: structural connectives (generalizing meta-linguistic comma in sequents $\left.\phi_{1}, \ldots, \phi_{n} \vdash \psi_{1}, \ldots, \psi_{m}\right)$
- generation trees (generalizing sets, multisets, sequences)
- Display property:

$$
\frac{\frac{Y \vdash X>Z}{X ; Y \vdash Z}}{\frac{Y ; X \vdash Z}{X \vdash Y>Z}}
$$

display rules semantically justified by adjunction/residuation

- Canonical proof of cut elimination (via metatheorem)

Proper display calculi (Wansing 98)

Definition

A proper display calculus verifies each of the following conditions:

1. structures can disappear, formulas are forever;
2. tree-traceable formula-occurrences, via suitably defined congruence relation:

- same shape, same position, non-proliferation;

3. principal = displayed
4. rules are closed under uniform substitution of congruent parameters (Properness!);
5. reduction strategy exists when both cut formulas are principal.

Theorem
Cut elimination and subformula property hold for any proper display calculus.

Multi-type proper display calculi

Definition

A proper display calculus verifies each of the following conditions:

1. structures can disappear, formulas are forever;
2. tree-traceable formula-occurrences, via suitably defined congruence relation (same shape, position, non-proliferation)
3. principal $=$ displayed
4. rules are closed under uniform substitution of congruent parameters within each type (Properness!);
5. reduction strategy exists when cut formulas are principal.
6. type-uniformity of derivable sequents;
7. strongly uniform cuts in each/some type(s).

Theorem (Canonical!)

Cut elimination and subformula property hold for any proper display calculus.

Main Ideas

- Types: A finer book-keeping device for properness
- Display rules: Sliding doors between types
- 5 basic properties in a semi-automatic package

First-order logic and properness

$$
\begin{array}{ll}
\forall_{L} \frac{A[t / x], \Gamma \vdash \Delta}{\forall x A, \Gamma \vdash \Delta} & \frac{\Gamma \vdash A[y / x], \Delta}{\Gamma \vdash \forall x A, \Delta} \forall_{R} \\
\exists_{L} \frac{A[y / x], \Gamma \vdash \Delta}{\exists x A, \Gamma \vdash \Delta} & \frac{\Gamma \vdash A[t / x], \Delta}{\Gamma \vdash \exists x A, \Delta} \exists_{R}
\end{array}
$$

where in \forall_{R} and $\exists_{L} y$ is not free in the conclusion.

Display calculus: Quantifiers and adjunctions

Consider $\forall y: \wp(X \times Y) \rightarrow \wp(X)$ and $\pi^{-1}: \wp(X) \rightarrow \wp(X \times Y)$ defined as:

- $\forall y(A)=\bigcap_{y \in Y}\{x \in X \mid(x, y) \in A\}$
- $\pi^{-1}(A)=A \times Y$

We have:

$$
\pi^{-1}(A) \subseteq B \quad \Longleftrightarrow \quad A \subseteq \forall y(B)
$$

Display calculus: Quantifiers and adjunctions

Consider $\exists y: \wp(X \times Y) \rightarrow \wp(X)$ and $\pi^{-1}: \wp(X) \rightarrow \wp(X \times Y)$ defined as:

- $\exists y(A)=\bigcup_{y \in Y}\{x \in X \mid(x, y) \in A\}$
- $\pi^{-1}(A)=A \times Y$

We have:

$$
\exists y(A) \subseteq B \quad \Longleftrightarrow \quad A \subseteq \pi^{-1}(B)
$$

Display calculus: Quantifiers and adjunctions

- Algebraically: Existential and universal quantification are the left and right adjoints respectively of the inverse projection map.
- Categorically: Existential and universal quantification are the left and right adjoints respectively of the pullback along projections.

Logical connectives and types

- Symbols for quantifiers and their adjoint for each $x \in \operatorname{Var}$:

Structural symbols	Q_{x}		\circ_{x}	
Operational symbols	$\exists x$	$\forall x$	\cdot^{x}	$\cdot x$

- Types will be named after the elements $F \in \wp_{\omega}(V a r)$.
- A type \mathcal{L}_{F} contains a formula φ iff $\mathrm{FV}(\varphi)=F$.
- $\varphi \in \mathcal{L}_{F \cup\{y\}} \Longleftrightarrow \forall y \varphi \in \mathcal{L}_{F}$
- $\psi \in \mathcal{L}_{F \backslash\{x\}} \Longleftrightarrow \circ_{x} \psi \in \mathcal{L}_{F}$

Display Calculus

Introduction rules for quantifiers and their adjoint:

$$
\begin{gathered}
\exists_{L} \frac{\mathrm{Q}_{x} A \vdash_{F} X}{\exists x A \vdash_{F} X} \quad \frac{X \vdash_{F} A}{Q x X \vdash_{F \backslash\{x\}} \exists x A} \exists_{R} \\
\forall_{L} \frac{A \vdash_{F} X}{\forall x A \vdash_{F \backslash\{x\}} Q x A} \quad \frac{X \vdash_{F} \mathrm{Q}_{x} A}{X \vdash{ }_{F} \forall x A} \forall_{R} \\
\circ_{M} \frac{X \vdash{ }_{F \backslash\{x\}} Y}{\circ_{x} X \vdash{ }_{F \cup\{x\}} \circ_{x} Y} \\
{ }_{L} \frac{\circ_{X} A \vdash_{F} X}{\cdot x A \vdash{ }_{F} X} \quad \frac{X \vdash{ }_{F} \circ_{x} A}{X \vdash{ }_{F} \cdot x A} \cdot{ }_{R}
\end{gathered}
$$

Display Calculus

Display postulates for quantifiers and their adjoint:

$$
\xlongequal[X \vdash_{F \cup\{x\}} \circ_{x} Y]{Q_{x} X \vdash_{F \backslash\{x\}} Y} \xlongequal[o_{x} Y \vdash_{F \cup\{x\}} X]{Y \vdash_{F \backslash\{x\}} Q_{x} X}
$$

Necessitation quantification and their adjoint:

$$
\frac{\mathrm{I} \vdash_{F} X}{\overline{o_{x} \mathrm{I} \vdash_{F \cup\{x\}} X}} \xlongequal{X \vdash_{F} \mathrm{I}}
$$

Improper rules in light of multi-type

Assume that $x \notin \mathrm{FV}(Y)$. We have

$$
\frac{\frac{A \vdash F \circ_{x} Y}{Q x A \vdash F \backslash\{x\}} Y}{\exists x A \vdash F \backslash\{x\}} \text { Y }
$$

First-order logic and properness

$$
\begin{array}{ll}
\forall_{L} \frac{A[t / x], \Gamma \vdash \Delta}{\forall x A, \Gamma \vdash \Delta} & \frac{\Gamma \vdash A[y / x], \Delta}{\Gamma \vdash \forall x A, \Delta} \forall_{R} \\
\exists_{L} \frac{A[y / x], \Gamma \vdash \Delta}{\exists x A, \Gamma \vdash \Delta} & \frac{\Gamma \vdash A[t / x], \Delta}{\Gamma \vdash \exists x A, \Delta} \exists_{R}
\end{array}
$$

Variable substitution: Side conditions

- In $\forall x(P x \wedge R y)$ the free variable y cannot be substituted with x.
- $\forall_{L} \frac{x=x \vdash x=x}{\forall y(y=x) \vdash x=x}$ is a valid proof.
- How to substitute x in the formula $\cdot{ }_{x} A$?

Explicit substitution

- $(y / / x)$: variable renaming;
- (t / x) : substitution a term with fresh variables;
- (y / x) : identifying two variables.

Substitution, as an explicit operation is both meet and join preserving, therefore it has both left and right adjoints.

Improper rules in light of substitution

$$
\frac{\frac{(t / x) A \vdash_{F} C}{}}{\frac{A \vdash_{F^{\prime}}[x / t] C}{\forall x A \vdash{ }_{F^{\prime} \backslash\{x\}} Q x[x / t] C}} \frac{o_{x} \forall x A{ }_{F^{\prime}}[x / t] C}{o_{x} \forall x A \vdash_{F} C}
$$

Expanded language \mathcal{L}^{\star}

- For every sequent in the language with explicit substitution, \mathcal{L}^{\star}, there exists a translation into a sequent in \mathcal{L}.
- For every provable sequent $X \vdash Y$ of the Gentzen calculus, there exists a provable sequent in \mathcal{L}^{\star} whose translation is $X \vdash Y$.
- Given two sequents with the same translation, we cannot, in principle, show that one proves the other.

Interaction rules

$$
\begin{aligned}
\frac{(t / x)(X ; Y) \vdash Z}{(t / x) X ;(t / x) Y \vdash Z} & \frac{Z \vdash(t / x)(X ; Y)}{Z \vdash(t / x) X ;(t / x) Y} \\
\frac{(t / x) \mathrm{Q} y X \vdash F \backslash\{z\}}{} \overline{\mathrm{Qz}(t / x)(z / / y) X \vdash F \backslash\{z\}} & \frac{Y \vdash F \backslash\{z z(t / x) \mathrm{Q} y X}{Y \vdash F \backslash\{z\} \mathrm{Q}(t / x)(z / / y) X} \\
\frac{(t / x)(s / y) X \vdash Y}{\overline{((t / x) s / y) X \vdash Y}} & \xlongequal[Y \vdash(t / x)(s / y) X]{Y \vdash((t / x) s / y) X}
\end{aligned}
$$

if $x \in \mathrm{FV}(s)$.

New types

$$
\frac{\frac{x \vdash x}{(y / / x) x \vdash y} \quad y \vdash y}{\frac{f(y,(y / / x) x)+f(y, y)}{(y / / x) f(y, x) \vdash f(y, y)}} \frac{\frac{y \vdash y}{f(y, y)+f((y / / x) x, y)}}{(y / / x) f(y, x) \vdash(y / / x) f(x, y)}
$$

Final message and questions

- Everything is explicit.
- Proper calculus.
- We can incorporate equational theories on the level of the types.
- More refined notions of quantification?
- Is adjunction meaningful on the level of the types?

