First-order logic properly displayed

Apostolos Tzimoulis joint work with S. Balco, G. Greco, A. Kurz, M. A. Moshier, and A. Palmigiano

TACL 2017, Prague

Starting point: Display Calculi

- Natural generalization of Gentzen's sequent calculi;
- sequents $X \vdash Y$, where X and Y are structures:
 - formulas are atomic structures
 - built-up: structural connectives (generalizing meta-linguistic comma in sequents φ₁,..., φ_n ⊢ ψ₁,..., ψ_m)
 - generation trees (generalizing sets, multisets, sequences)
- Display property:

$$\frac{Y \vdash X > Z}{X; Y \vdash Z}$$

$$\frac{Y \vdash X > Z}{Y; X \vdash Z}$$

$$\frac{Y \vdash Y > Z}{X \vdash Y > Z}$$

display rules semantically justified by adjunction/residuation

Canonical proof of cut elimination (via metatheorem)

Proper display calculi (Wansing 98)

Definition

A **proper display calculus** verifies each of the following conditions:

- 1. structures can disappear, formulas are forever;
- 2. **tree-traceable** formula-occurrences, via suitably defined *congruence* relation:
 - same shape, same position, non-proliferation;
- 3. principal = displayed
- rules are closed under uniform substitution of congruent parameters (Properness!);
- 5. **reduction strategy** exists when both cut formulas are principal.

Theorem

Cut elimination and subformula property hold for any **proper display calculus**.

Multi-type proper display calculi

Definition

A **proper display calculus** verifies each of the following conditions:

- 1. structures can disappear, formulas are forever;
- 2. **tree-traceable** formula-occurrences, via suitably defined *congruence* relation (same shape, position, non-proliferation)
- 3. principal = displayed
- rules are closed under **uniform substitution** of congruent parameters within each type (Properness!);
- 5. reduction strategy exists when cut formulas are principal.
- 6. type-uniformity of derivable sequents;
- 7. strongly uniform cuts in each/some type(s).

Theorem (Canonical!)

Cut elimination and subformula property hold for any **proper display calculus**.

Main Ideas

- Types: A finer book-keeping device for properness
- Display rules: Sliding doors between types
- 5 basic properties in a semi-automatic package

First-order logic and properness

$$\forall_{L} \frac{A[t/x], \Gamma \vdash \Delta}{\forall xA, \Gamma \vdash \Delta} \qquad \frac{\Gamma \vdash A[y/x], \Delta}{\Gamma \vdash \forall xA, \Delta} \forall_{R}$$
$$\exists_{L} \frac{A[y/x], \Gamma \vdash \Delta}{\exists xA, \Gamma \vdash \Delta} \qquad \frac{\Gamma \vdash A[t/x], \Delta}{\Gamma \vdash \exists xA, \Delta} \exists_{R}$$

where in \forall_R and $\exists_L y$ is not free in the conclusion.

Display calculus: Quantifiers and adjunctions

Consider $\forall y : \wp(X \times Y) \to \wp(X)$ and $\pi^{-1} : \wp(X) \to \wp(X \times Y)$ defined as:

 $\blacktriangleright \quad \forall y(A) = \bigcap_{y \in Y} \{ x \in X \mid (x, y) \in A \}$

•
$$\pi^{-1}(A) = A \times Y$$

We have:

$$\pi^{-1}(A) \subseteq B \quad \Longleftrightarrow \quad A \subseteq \forall y(B)$$

Display calculus: Quantifiers and adjunctions

Consider $\exists y : \wp(X \times Y) \to \wp(X)$ and $\pi^{-1} : \wp(X) \to \wp(X \times Y)$ defined as:

 $\blacktriangleright \exists y(A) = \bigcup_{y \in Y} \{x \in X \mid (x, y) \in A\}$

$$\bullet \ \pi^{-1}(A) = A \times Y$$

We have:

$$\exists y(A) \subseteq B \quad \Longleftrightarrow \quad A \subseteq \pi^{-1}(B)$$

Display calculus: Quantifiers and adjunctions

- Algebraically: Existential and universal quantification are the left and right adjoints respectively of the inverse projection map.
- Categorically: Existential and universal quantification are the left and right adjoints respectively of the pullback along projections.

Logical connectives and types

Symbols for quantifiers and their adjoint for each $x \in Var$:

Structural symbols	Q_x		0 _{<i>x</i>}	
Operational symbols	$\exists x$	$\forall x$	·x	·x

- ► Types will be named after the elements $F \in \wp_{\omega}(Var)$.
- A type \mathcal{L}_F contains a formula φ iff $FV(\varphi) = F$.
- $\blacktriangleright \varphi \in \mathcal{L}_{F \cup \{y\}} \iff \forall y \varphi \in \mathcal{L}_F$
- $\blacktriangleright \ \psi \in \mathcal{L}_{F \setminus \{x\}} \iff \circ_x \psi \in \mathcal{L}_F$

Display Calculus

Introduction rules for quantifiers and their adjoint:

$$\exists_{L} \frac{Q_{x}A + FX}{\exists xA + FX} \quad \frac{X + FA}{QxX + F \setminus \{x\}} \exists xA} \exists_{R}$$
$$\forall_{L} \frac{A + FX}{\forall xA + F \setminus \{x\}} QxA \quad \frac{X + FQ_{x}A}{X + F \forall xA} \forall_{R}$$
$$\circ_{M} \frac{X + F \setminus \{x\}}{\circ_{x}X + F \cup \{x\}} \circ_{x} Y$$
$$\cdot_{L} \frac{\circ_{x}A + FX}{\cdot xA + FX} \quad \frac{X + F \circ_{x}A}{X + F \cdot xA} \cdot_{R}$$

Display Calculus

Display postulates for quantifiers and their adjoint:

$$\frac{\mathsf{Q}_{x}X \vdash_{F \setminus \{x\}}Y}{X \vdash_{F \cup \{x\}} \circ_{x} Y} \quad \frac{Y \vdash_{F \setminus \{x\}}\mathsf{Q}_{x}X}{\circ_{x}Y \vdash_{F \cup \{x\}}X}$$

Necessitation quantification and their adjoint:

$$\frac{\mathbf{I} \vdash_{F} X}{\circ_{x} \mathbf{I} \vdash_{F \cup \{x\}} X} \quad \frac{X \vdash_{F} \mathbf{I}}{X \vdash_{F \cup \{x\}} \circ_{x} \mathbf{I}}$$

Improper rules in light of multi-type

Assume that $x \notin FV(Y)$. We have

$$\frac{A \vdash_F \circ_x Y}{\begin{array}{c} QxA \vdash_{F \setminus \{x\}} Y \\ \hline \exists xA \vdash_{F \setminus \{x\}} Y \end{array}}$$

First-order logic and properness

$$\begin{array}{l} \forall_{L} \ \frac{A[t/x], \Gamma \vdash \Delta}{\forall xA, \Gamma \vdash \Delta} & \frac{\Gamma \vdash A[y/x], \Delta}{\Gamma \vdash \forall xA, \Delta} \forall_{R} \\ \\ \exists_{L} \ \frac{A[y/x], \Gamma \vdash \Delta}{\exists xA, \Gamma \vdash \Delta} & \frac{\Gamma \vdash A[t/x], \Delta}{\Gamma \vdash \exists xA, \Delta} \exists_{R} \end{array}$$

Variable substitution: Side conditions

▶ In $\forall x(Px \land Ry)$ the free variable *y* cannot be substituted with *x*.

•
$$\forall_L \frac{x = x \vdash x = x}{\forall y(y = x) \vdash x = x}$$
 is a valid proof.

• How to substitute x in the formula $\cdot_x A$?

Explicit substitution

- (y//x): variable renaming;
- (t/x): substitution a term with fresh variables;
- (y/x): identifying two variables.

Substitution, as an explicit operation is both meet and join preserving, therefore it has both left and right adjoints.

Improper rules in light of substitution

Expanded language \mathcal{L}^{\star}

- For every sequent in the language with explicit substitution, *L*^{*}, there exists a translation into a sequent in *L*.
- For every provable sequent $X \vdash Y$ of the Gentzen calculus, there exists a provable sequent in \mathcal{L}^* whose translation is $X \vdash Y$.
- Given two sequents with the same translation, we cannot, in principle, show that one proves the other.

Interaction rules

 $\frac{(t/x)(X;Y) \vdash Z}{(t/x)X;(t/x)Y \vdash Z} = \frac{Z \vdash (t/x)(X;Y)}{Z \vdash (t/x)X;(t/x)Y}$ $\frac{(t/x)QyX \vdash_{F \setminus \{z\}}Y}{Qz(t/x)(z//y)X \vdash_{F \setminus \{z\}}Y} = \frac{Y \vdash_{F \setminus \{z\}}(t/x)QyX}{Y \vdash_{F \setminus \{z\}}Qz(t/x)(z//y)X}$ $\frac{(t/x)(s/y)X \vdash Y}{((t/x)s/y)X \vdash Y} = \frac{Y \vdash (t/x)(s/y)X}{Y \vdash ((t/x)s/y)X}$

if $x \in FV(s)$.

New types

Final message and questions

- Everything is explicit.
- Proper calculus.
- We can incorporate equational theories on the level of the types.
- More refined notions of quantification?
- Is adjunction meaningful on the level of the types?