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µ-calculi

Add to a given algebraic framework
syntactic least and greatest fixed-point constructors.

E.g., the propositional modal µ-calculus:

φ := x | ¬x | > | φ ∧ φ | ⊥ | φ ∨ φ | �φ | �φ
| µx .φ | νx .φ , when x is positive in φ.

Interpret the syntactic least (resp. greatest) fixed-point as expected.

Jµx .φKv :=

least fixed-point of the monotone mapping X 7→ JφKv ,X/x

3/32



µ-calculi

Add to a given algebraic framework
syntactic least and greatest fixed-point constructors.

E.g., the propositional modal µ-calculus:

φ := x | ¬x | > | φ ∧ φ | ⊥ | φ ∨ φ | �φ | �φ
| µx .φ | νx .φ , when x is positive in φ.

Interpret the syntactic least (resp. greatest) fixed-point as expected.

Jµx .φKv :=

least fixed-point of the monotone mapping X 7→ JφKv ,X/x

3/32



µ-calculi

Add to a given algebraic framework
syntactic least and greatest fixed-point constructors.

E.g., the propositional modal µ-calculus:

φ := x | ¬x | > | φ ∧ φ | ⊥ | φ ∨ φ | �φ | �φ
| µx .φ | νx .φ , when x is positive in φ.

Interpret the syntactic least (resp. greatest) fixed-point as expected.

Jµx .φKv :=

least fixed-point of the monotone mapping X 7→ JφKv ,X/x

3/32



Alternation hierarchies in µ-calculi

Let ] count the number of alternating blocks of fixed-points.

Problem. For a given µ-calculus, does there exist n such that, for
each φ with ]φ > n, there exists ψ with γ ≡ ψ and ]ψ ≤ n?
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Alternation hierarchies, facts

I The alternation hierarchy for the modal µ-calculus is infinite
(there exists no such n) [Lenzi, 1996, Bradfield, 1998].

I Idem for the lattice µ-calculus [Santocanale, 2002].

I The alternation hierarchy for the linear µ-calculus (�x = �x)
is reduced to the Büchi fragment (here n = 2) .

I The alternation hierarchy for the modal µ-calculus on
transitive frames collapses to the alternation free fragment
(here n = 1.5) [Alberucci and Facchini, 2009].

I The alternation hierarchy for the distributive µ-calculus is
trivial (here n = 0) [Kozen, 1983].

A research plan:

Develop a theory explaining why alternation hierarchies collapses.
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µ-calculi on generalized distributive lattices

Theorem. [Frittella and Santocanale, 2014] There are lattice
varieties (Nation’s varieties)

D0 ⊆ D1 ⊆ . . . ⊆ Dn ⊆ . . .

with D0 the variety of distributive lattices, such that, on Dn and
for any lattice term φ,

φn+2(⊥) = φn+1(⊥) (= µx .φ) , φn(⊥) 6= φn+1(⊥) .

Corollary. The alternation hierarchy of the lattice µ-calculus is
trivial on Dn, for each n ≥ 0.
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The intuitionistic µ-calculus

After the distributive µ-calculus, the next on the list—by Pitt’s
quantifiers, we knew that least fixed-points and greatest
fixed-points are definable.

We extend the signature of Heyting algebras (i.e. Intuitionistic
Logic) with least and greatest fixed-point constructors.

Intuitionistic µ-terms are generated by the grammar:

φ := x | > | φ ∧ φ | ⊥ | φ ∨ φ | φ→ φ

| µx .φ | νx .φ , when x is positive in φ.
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Heyting algebra semantics

We take any provability semantics of IL with fixed points:

I (Complete) Heyting algebras.

I Kripke frames.

I Any sequent calculus for Intuitionisitc Logic (e.g. LJ) plus
Park/Kozen’s rules for least and greatest fixed-points:

φ[ψ/x ] ` ψ

µx .φ a ψ

Γ ` φ(µx .φ)

Γ ` µx .φ

φ(νx .φ) ` δ

νx .φ ` δ

ψ ` φ[ψ/x ]

ψ ` νx .φ

Definition. A Heyting algebra is a bounded lattice
H = 〈H,>,∧,⊥,∨〉 with an additional binary operation →
satisfying

x ∧ y ≤ z iff x ≤ y → z .
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Ruitenburg’s theorem [Ruitenburg, 1984]

Theorem. For each intuitionistic formula φ, there exists n ≥ 0 such
that φn(x) ≡ φn+2(x).

Then

φn(⊥) ≤ φn+1(⊥) ≤ φn+2(⊥) = φn(⊥) ,

so φn(⊥) is the least fixed-point of φ.

Corollary. The alternation hierarchy for the intuitionistic
µ-calculus is trivial.

NB : Ruitenburg’s n might not be the closure ordinal of µx .φ.
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Peirce, compatibility, strenghs and strongness

Proposition. Peirce’s theorem for Heyting algebras.
Every term φ is compatible. In particular, for ψ, χ arbitrary terms,
the equation

φ[ψ/x ] ∧ χ = φ[ψ ∧ χ/x ] ∧ χ .

holds on Heyting algebras.

Corollary. Every term φ monotone in x is strong in x . That is, any
the following equivalent conditions

φ[ψ/x ] ∧ χ ≤ φ[ψ ∧ χ/x ] , ψ → χ ≤ φ[ψ/x ]→ φ[χ/x ],

hold, for any terms ψ and χ.
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Greatest fixed-points

Proposition. On Heyting algebras, we have

νx .φ = φ(>) .

Using the deduction theorem and Pitts’ quantifiers:

νx .φ(x) = ∃x .(x ∧ x → φ(x)) = ∃x .(x ∧ φ(x)) = φ(>) .

Using strongness:

φ(>) = φ(>) ∧ φ(>) ≤ φ(> ∧ φ(>)) = φ2(>) .
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Greatest solutions of systems of equations

Proposition. On Heyting algebras, a system of equations
x1 = φ1(x1, . . . , xn)

...
xn = φn(x1, . . . , xn)


has a greatest solution obtained by iterating

φ := 〈φ1, . . . , φn〉

n times from >.

Proof. Using the Bekic property.
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Least fixed-points: splitting the roles of variables

Due to

µx .φ(x , x) = µx .µy .φ(x , y)

we can separate computing the least fixed-points w.r.t:

weakly negative variables: variables that appear within the
left-hand-side of an implication,

fully positive variables: those appearing only within the
right-hand-side of an implication.
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Weakly negative least fixed-points: an example

Use

µx .(f ◦ g)(x) = f (µy .(g ◦ f )(y) )

to argue that:

µx .[ (x → a)→ b ] = [ νy .(y → b)→ a ]→ b

= [ (> → b)→ a ]→ b

= [ b → a ]→ b .
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Weakly negative least fixed-points:
reducing to greatest fixed-points

If each occurrence of x in φ is weakly negative, then

φ(x) = φ0[φ1(x)/y1, . . . , φn(x)/yn]

with φ0(y1, . . . , yn) negative in each yj .

Due to

µx .(f ◦ g)(x) = f (µy .(g ◦ f )(y) )

we have

µx .φ(x) = µx .(φ0 ◦ 〈φ1, . . . , φn〉 )(x)

= φ0( νy1...yn .( 〈φ1, . . . φn〉 ◦ φ0 )(y1, . . . yn)) .
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Interlude: least fixed-points of strong functions

If f and fi , i ∈ I , are strong, then

µx .a ∧ f (x) = a ∧ µx .f (x) ,

µx .
∧
i∈I

fi (x) =
∧
µx .fi (x) ,

µx .a→ f (x) = a→ µx .f (x) .
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Strongly positive fixed-points: disjunctive formulas

The equation

µx .
∧
i∈I

fi (x) =
∧
i∈I

µx .fi (x)

allows to push least fixed-points down through conjunctions.

Once all conjunctions have been pushed up in formulas, we are left to
compute least fixed-points of disjunctive formulas, generated by the
grammar:

φ = x | β ∨ φ | α→ φ |
∨

i=1,...,n

φi ,

where α and β do not contain the variable x .

We call α an head subformula and β a side subformula.
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Least fixed-points of inflating functions

All functions f denoted by such formula φ are (monotone and)
inflating:

x ≤ f (x) .

Let fi , i = 1, . . . , n, be a collection of monotone inflating functions.
Then

µx .
∨

i=1,...,n

fi (x) = µx .(f1 ◦ . . . ◦ fn)(x) .
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Least fixed-points of disjunctive formulas

Proposition. Let φ be a disjunctive formula, with Head(φ) (resp.,
Side(φ)) the collection of its head (resp., side) subformulas. Then

µx .φ =
∧

α∈Head(φ)

α→
∨

β∈Side(φ)

β .

If Head(φ) = {α1, . . . , αn } and Side(φ) = {β1, . . . , βm }:

µx .φ = µx .α1 → α2 → . . .→ αn → β1 ∨ . . . ∨ βm ∨ x

= µx .
∧

α∈Head(φ)

α→
∨

β∈Side(φ)

β ∨ x

=
∧

α∈Head(φ)

α→ µx .
∨

β∈Side(φ)

β ∨ x

=
∧

α∈Head(φ)

α→
∨

β∈Side(φ)

β .
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Closure ordinals

Definition. (Closure ordinal). For K a class of models and φ(x) a
monotone formula/term, let

clK(φ) = least ordinal α such that M |= µx .φ = φα(⊥) .

In general, clK(φ) might not exist.

If H is the class of Heyting algebras and φ(x) is an intuitionistic
formula, then

clH(φ) < ω .
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Upper bounds from fixed-point equations

clK( f ◦ g ) ≤ clK( g ◦ f ) + 1,

clH(φ0(φ1(x), . . . , φn(x)) ) ≤ n + 1,
when φ0(y1, . . . , yn) contravariant,

clH(φ ) ≤ card(Head(φ)) + 1 ,
when φ is a disjunctive formula,

clK( f ◦∆ ) ≤ n · clK(g),
when n = clK(f (x , )) and g(x) = µy .f (x , y),

clK(f ∧ g) ≤ clK(f ) + clH(g)− 1,
when f and g are strong.
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Examples

1. Weakly negative x : ∧
i=1,...,n

(x → ai )→ bi

converges after n + 1 steps. This upper bound is strict.

2. Fully positive x :

b ∨
∨

i=1,...,n

ai → x

converges after n + 1 steps. This upper bound is strict.
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Examples (II)

I Similarly,

φ(x) :=
∨

i=1,...,n

(x → ai )→ bi

converges within n + 1 steps, according to the general theory.

Theorem. For any n ≥ 2, φ(x) converges to its least fixed-point
within 3 steps.
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Back to Ruitenburg’s theorem

I Inspection of Ruitenburg’s paper shows that

clH(φ) = O(n) ,

where n is the number of implication symbols in φ.

I Given a fully positive formula φ, pushing up conjuctions yields
a formula ∧

i=1,...,k

δi , δi disjunctive,

where k might be exponential w.r.t. the size of φ.

Our method yields the upper bound

clH(φ) = clH(
∧

i=1,...,k

δi ) ≤ 1− k +
∑

i=1,...,k

clH(δi ) ,

exponential w.r.t. the size of φ.
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Closing the gap ?

Problem. Let δ1, δ2, . . . , δn be disjunctive formulas and put

φ(x) :=
∧

i=1,...,n

δi (x) .

Does

µx .φ(x) =
∧

i=1,...,n

∧
Head(δi )→

∨
Side(δi ) ≤ φH+1(⊥) ,

with H = card(
⋃

i=1,...,n Head(δi ))?

I This holds (non trivially) for n = 2.

I Not the only plausible conjecture.

28/32



Closing the gap ?

Problem. Let δ1, δ2, . . . , δn be disjunctive formulas and put

φ(x) :=
∧

i=1,...,n

δi (x) .

Does

µx .φ(x) =
∧

i=1,...,n

∧
Head(δi )→

∨
Side(δi ) ≤ φH+1(⊥) ,

with H = card(
⋃

i=1,...,n Head(δi ))?

I This holds (non trivially) for n = 2.

I Not the only plausible conjecture.

28/32



After thoughts

I A decision procedure for the Intuitionistic µ-calculus.

I Axiomatization of fixed-points and of some Pitt’s quantifiers.

I General theory of fixed-point elimination: no uniform upper
bounds for closure ordinals.

I Relevance of strongness
— it looks like Pitt’s quantifiers less relevant.

I A working path to understand Ruitenburg’s theorem.
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Thanks ! Questions ?
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