Fixed-point elimination in Heyting algebras ${ }^{1}$

Silvio Ghilardi, Università di Milano

Maria João Gouveia, Universidade de Lisboa
Luigi Santocanale, Aix-Marseille Université

TACL@Praha, June 2017

Plan

A primer on mu-calculi

The intuitionistic μ-calculus

The elimination procedure

Bounding closure ordinals

μ-calculi

Add to a given algebraic framework
syntactic least and greatest fixed-point constructors.

μ-calculi

Add to a given algebraic framework syntactic least and greatest fixed-point constructors.
E.g., the propositional modal μ-calculus:

$$
\begin{aligned}
& \phi:=x|\neg x| \top|\phi \wedge \phi| \perp|\phi \vee \phi| \square \phi \mid \diamond \phi \\
& \quad\left|\mu_{x} \cdot \phi\right| \nu_{x} \cdot \phi, \quad \text { when } x \text { is positive in } \phi .
\end{aligned}
$$

μ-calculi

Add to a given algebraic framework syntactic least and greatest fixed-point constructors.
E.g., the propositional modal μ-calculus:

$$
\begin{aligned}
& \phi:=x|\neg x| \top|\phi \wedge \phi| \perp|\phi \vee \phi| \square \phi \mid \diamond \phi \\
& \quad\left|\mu_{x} \cdot \phi\right| \nu_{x} \cdot \phi, \quad \text { when } x \text { is positive in } \phi .
\end{aligned}
$$

Interpret the syntactic least (resp. greatest) fixed-point as expected.

$$
\llbracket \mu_{x} \cdot \phi \rrbracket_{v}:=
$$

least fixed-point of the monotone mapping $X \mapsto \llbracket \phi \rrbracket_{v, X / X}$

Alternation hierarchies in μ-calculi

Let \sharp count the number of alternating blocks of fixed-points.

Alternation hierarchies in μ-calculi

Let \sharp count the number of alternating blocks of fixed-points.

Problem. For a given μ-calculus, does there exist n such that, for each ϕ with $\sharp \phi>n$, there exists ψ with $\gamma \equiv \psi$ and $\sharp \psi \leq n$?

Alternation hierarchies, facts

- The alternation hierarchy for the modal μ-calculus is infinite (there exists no such n) [Lenzi, 1996, Bradfield, 1998].
- Idem for the lattice μ-calculus [Santocanale, 2002].
- The alternation hierarchy for the linear μ-calculus ($\diamond x=\square x$) is reduced to the Büchi fragment (here $n=2$).
- The alternation hierarchy for the modal μ-calculus on transitive frames collapses to the alternation free fragment (here $n=1.5$) [Alberucci and Facchini, 2009].
- The alternation hierarchy for the distributive μ-calculus is trivial (here $n=0$) [Kozen, 1983].

Alternation hierarchies, facts

- The alternation hierarchy for the modal μ-calculus is infinite (there exists no such n) [Lenzi, 1996, Bradfield, 1998].
- Idem for the lattice μ-calculus [Santocanale, 2002].
- The alternation hierarchy for the linear μ-calculus ($\diamond x=\square x$) is reduced to the Büchi fragment (here $n=2$).
- The alternation hierarchy for the modal μ-calculus on transitive frames collapses to the alternation free fragment (here $n=1.5$) [Alberucci and Facchini, 2009].
- The alternation hierarchy for the distributive μ-calculus is trivial (here $n=0$) [Kozen, 1983].

A research plan:
Develop a theory explaining why alternation hierarchies collapses.

μ-calculi on generalized distributive lattices

Theorem. [Frittella and Santocanale, 2014] There are lattice varieties (Nation's varieties)

$$
\mathcal{D}_{0} \subseteq \mathcal{D}_{1} \subseteq \ldots \subseteq \mathcal{D}_{n} \subseteq \ldots
$$

with \mathcal{D}_{0} the variety of distributive lattices, such that, on \mathcal{D}_{n} and for any lattice term ϕ,

$$
\phi^{n+2}(\perp)=\phi^{n+1}(\perp)\left(=\mu_{x} \cdot \phi\right), \quad \phi^{n}(\perp) \neq \phi^{n+1}(\perp) .
$$

μ-calculi on generalized distributive lattices

Theorem. [Frittella and Santocanale, 2014] There are lattice varieties (Nation's varieties)

$$
\mathcal{D}_{0} \subseteq \mathcal{D}_{1} \subseteq \ldots \subseteq \mathcal{D}_{n} \subseteq \ldots
$$

with \mathcal{D}_{0} the variety of distributive lattices, such that, on \mathcal{D}_{n} and for any lattice term ϕ,

$$
\phi^{n+2}(\perp)=\phi^{n+1}(\perp)\left(=\mu_{x} \cdot \phi\right), \quad \phi^{n}(\perp) \neq \phi^{n+1}(\perp) .
$$

Corollary. The alternation hierarchy of the lattice μ-calculus is trivial on \mathcal{D}_{n}, for each $n \geq 0$.

Plan

A primer on mu-calculi

The intuitionistic μ-calculus

The elimination procedure

Bounding closure ordinals

The intuitionistic μ-calculus

After the distributive μ-calculus, the next on the list-by Pitt's quantifiers, we knew that least fixed-points and greatest fixed-points are definable.

We extend the signature of Heyting algebras (i.e. Intuitionistic Logic) with least and greatest fixed-point constructors.

Intuitionistic μ-terms are generated by the grammar:

$$
\begin{aligned}
\phi:=x \mid \top & |\phi \wedge \phi| \perp|\phi \vee \phi| \phi \rightarrow \phi \\
& \left|\mu_{x} \cdot \phi\right| \nu_{x} \cdot \phi, \quad \text { when } x \text { is positive in } \phi .
\end{aligned}
$$

Heyting algebra semantics

We take any provability semantics of IL with fixed points:

- (Complete) Heyting algebras.
- Kripke frames.
- Any sequent calculus for Intuitionisitc Logic (e.g. LJ) plus Park/Kozen's rules for least and greatest fixed-points:

$$
\frac{\phi[\psi / x] \vdash \psi}{\mu_{x} \cdot \phi \dashv \psi} \quad \frac{\Gamma \vdash \phi\left(\mu_{x} \cdot \phi\right)}{\Gamma \vdash \mu_{x} \cdot \phi} \frac{\phi\left(\nu_{x} \cdot \phi\right) \vdash \delta}{\nu_{x} \cdot \phi \vdash \delta} \quad \frac{\psi \vdash \phi[\psi / x]}{\psi \vdash \nu_{x} \cdot \phi}
$$

Definition. A Heyting algebra is a bounded lattice $H=\langle H, \top, \wedge, \perp, \vee\rangle$ with an additional binary operation \rightarrow satisfying

$$
x \wedge y \leq z \quad \text { iff } \quad x \leq y \rightarrow z
$$

Ruitenburg's theorem [Ruitenburg, 1984]

Theorem. For each intuitionistic formula ϕ, there exists $n \geq 0$ such that $\phi^{n}(x) \equiv \phi^{n+2}(x)$.

Ruitenburg's theorem [Ruitenburg, 1984]

Theorem. For each intuitionistic formula ϕ, there exists $n \geq 0$ such that $\phi^{n}(x) \equiv \phi^{n+2}(x)$.

Then

$$
\phi^{n}(\perp) \leq \phi^{n+1}(\perp) \leq \phi^{n+2}(\perp)=\phi^{n}(\perp),
$$

so $\phi^{n}(\perp)$ is the least fixed-point of ϕ.

Ruitenburg's theorem [Ruitenburg, 1984]

Theorem. For each intuitionistic formula ϕ, there exists $n \geq 0$ such that $\phi^{n}(x) \equiv \phi^{n+2}(x)$.

Then

$$
\phi^{n}(\perp) \leq \phi^{n+1}(\perp) \leq \phi^{n+2}(\perp)=\phi^{n}(\perp),
$$

so $\phi^{n}(\perp)$ is the least fixed-point of ϕ.

Corollary. The alternation hierarchy for the intuitionistic μ-calculus is trivial.

Ruitenburg's theorem [Ruitenburg, 1984]

Theorem. For each intuitionistic formula ϕ, there exists $n \geq 0$ such that $\phi^{n}(x) \equiv \phi^{n+2}(x)$.

Then

$$
\phi^{n}(\perp) \leq \phi^{n+1}(\perp) \leq \phi^{n+2}(\perp)=\phi^{n}(\perp),
$$

so $\phi^{n}(\perp)$ is the least fixed-point of ϕ.

Corollary. The alternation hierarchy for the intuitionistic μ-calculus is trivial.

NB : Ruitenburg's n might not be the closure ordinal of $\mu_{x} \cdot \phi$.

Peirce, compatibility, strenghs and strongness

Proposition. Peirce's theorem for Heyting algebras.
Every term ϕ is compatible. In particular, for ψ, χ arbitrary terms, the equation

$$
\phi[\psi / x] \wedge \chi=\phi[\psi \wedge \chi / x] \wedge \chi
$$

holds on Heyting algebras.

Corollary. Every term ϕ monotone in x is strong in x. That is, any the following equivalent conditions

$$
\phi[\psi / x] \wedge \chi \leq \phi[\psi \wedge \chi / x], \quad \psi \rightarrow \chi \leq \phi[\psi / x] \rightarrow \phi[\chi / x],
$$

hold, for any terms ψ and χ.

Plan

A primer on mu-calculi

The intuitionistic μ-calculus

The elimination procedure

Bounding closure ordinals

Greatest fixed-points

Proposition. On Heyting algebras, we have

$$
\nu_{x} \cdot \phi=\phi(T) .
$$

Greatest fixed-points

Proposition. On Heyting algebras, we have

$$
\nu_{x} \cdot \phi=\phi(T)
$$

Using the deduction theorem and Pitts' quantifiers:

$$
\nu_{x} \cdot \phi(x)=\exists_{x} \cdot(x \wedge x \rightarrow \phi(x))=\exists_{x} \cdot(x \wedge \phi(x))=\phi(\top) .
$$

Greatest fixed-points

Proposition. On Heyting algebras, we have

$$
\nu_{x} \cdot \phi=\phi(T)
$$

Using the deduction theorem and Pitts' quantifiers:

$$
\nu_{x} \cdot \phi(x)=\exists_{x} \cdot(x \wedge x \rightarrow \phi(x))=\exists_{x} \cdot(x \wedge \phi(x))=\phi(\top) .
$$

Using strongness:

$$
\phi(T)=\phi(T) \wedge \phi(T) \leq \phi(T \wedge \phi(T))=\phi^{2}(T) .
$$

Greatest solutions of systems of equations

Proposition. On Heyting algebras, a system of equations

$$
\left\{\begin{aligned}
x_{1} & =\phi_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots & \\
x_{n} & =\phi_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}\right\}
$$

has a greatest solution obtained by iterating

$$
\phi:=\left\langle\phi_{1}, \ldots, \phi_{n}\right\rangle
$$

n times from T.

Proof. Using the Bekic property.

Least fixed-points: splitting the roles of variables

Due to

$$
\mu_{x} \cdot \phi(x, x)=\mu_{x} \cdot \mu_{y} \cdot \phi(x, y)
$$

Least fixed-points: splitting the roles of variables

Due to

$$
\mu_{x} \cdot \phi(x, x)=\mu_{x} \cdot \mu_{y} \cdot \phi(x, y)
$$

we can separate computing the least fixed-points w.r.t: weakly negative variables: variables that appear within the left-hand-side of an implication,
fully positive variables: those appearing only within the right-hand-side of an implication.

Weakly negative least fixed-points: an example

Use

$$
\mu_{x} \cdot(f \circ g)(x)=f\left(\mu_{y} \cdot(g \circ f)(y)\right)
$$

Weakly negative least fixed-points: an example

Use

$$
\mu_{x} \cdot(f \circ g)(x)=f\left(\mu_{y} \cdot(g \circ f)(y)\right)
$$

to argue that:

$$
\begin{aligned}
\mu_{x} \cdot[(x \rightarrow a) \rightarrow b] & =\left[\nu_{y} \cdot(y \rightarrow b) \rightarrow a\right] \rightarrow b \\
& =[(\top \rightarrow b) \rightarrow a] \rightarrow b \\
& =[b \rightarrow a] \rightarrow b .
\end{aligned}
$$

Weakly negative least fixed-points:

reducing to greatest fixed-points

If each occurrence of x in ϕ is weakly negative, then

$$
\phi(x)=\phi_{0}\left[\phi_{1}(x) / y_{1}, \ldots, \phi_{n}(x) / y_{n}\right]
$$

with $\phi_{0}\left(y_{1}, \ldots, y_{n}\right)$ negative in each y_{j}.
Due to

$$
\mu_{x} \cdot(f \circ g)(x)=f\left(\mu_{y} \cdot(g \circ f)(y)\right)
$$

Weakly negative least fixed-points:

reducing to greatest fixed-points

If each occurrence of x in ϕ is weakly negative, then

$$
\phi(x)=\phi_{0}\left[\phi_{1}(x) / y_{1}, \ldots, \phi_{n}(x) / y_{n}\right]
$$

with $\phi_{0}\left(y_{1}, \ldots, y_{n}\right)$ negative in each y_{j}.
Due to

$$
\mu_{x} \cdot(f \circ g)(x)=f\left(\mu_{y} \cdot(g \circ f)(y)\right)
$$

we have

$$
\begin{aligned}
\mu_{x} \cdot \phi(x) & =\mu_{x} \cdot\left(\phi_{0} \circ\left\langle\phi_{1}, \ldots, \phi_{n}\right\rangle\right)(x) \\
& =\phi_{0}\left(\nu_{y_{1}} \ldots y_{n} \cdot\left(\left\langle\phi_{1}, \ldots \phi_{n}\right\rangle \circ \phi_{0}\right)\left(y_{1}, \ldots y_{n}\right)\right) .
\end{aligned}
$$

Interlude: least fixed-points of strong functions

If f and $f_{i}, i \in I$, are strong, then

$$
\begin{aligned}
\mu_{x} \cdot a \wedge f(x) & =a \wedge \mu_{x} \cdot f(x) \\
\mu_{x} \cdot \bigwedge_{i \in I} f_{i}(x) & =\bigwedge \mu_{x} \cdot f_{i}(x) \\
\mu_{x} \cdot a \rightarrow f(x) & =a \rightarrow \mu_{x} \cdot f(x)
\end{aligned}
$$

Strongly positive fixed-points: disjunctive formulas

The equation

$$
\mu_{x} \cdot \bigwedge_{i \in I} f_{i}(x)=\bigwedge_{i \in I} \mu_{x} \cdot f_{i}(x)
$$

allows to push least fixed-points down through conjunctions.

Strongly positive fixed-points: disjunctive formulas

The equation

$$
\mu_{x} \cdot \bigwedge_{i \in I} f_{i}(x)=\bigwedge_{i \in I} \mu_{x} \cdot f_{i}(x)
$$

allows to push least fixed-points down through conjunctions.

Once all conjunctions have been pushed up in formulas, we are left to compute least fixed-points of disjunctive formulas, generated by the grammar:

$$
\begin{aligned}
\phi=x|\beta \vee \phi| \alpha & \rightarrow \phi \mid \\
& \quad \bigvee_{i=1, \ldots, n} \phi_{i}, \\
& \text { where } \alpha \text { and } \beta \text { do not contain the variable } x .
\end{aligned}
$$

We call α an head subformula and β a side subformula.

Least fixed-points of inflating functions

All functions f denoted by such formula ϕ are (monotone and) inflating:

$$
x \leq f(x)
$$

Let $f_{i}, i=1, \ldots, n$, be a collection of monotone inflating functions. Then

$$
\mu_{x} \cdot \bigvee_{i=1, \ldots, n} f_{i}(x)=\mu_{x} \cdot\left(f_{1} \circ \ldots \circ f_{n}\right)(x)
$$

Least fixed-points of disjunctive formulas

Proposition. Let ϕ be a disjunctive formula, with $\operatorname{Head}(\phi)$ (resp., Side (ϕ)) the collection of its head (resp., side) subformulas. Then

$$
\mu_{x} \cdot \phi=\bigwedge_{\alpha \in \operatorname{Head}(\phi)} \alpha \rightarrow \bigvee_{\beta \in \operatorname{Side}(\phi)} \beta .
$$

Least fixed-points of disjunctive formulas

Proposition. Let ϕ be a disjunctive formula, with $\operatorname{Head}(\phi)$ (resp., Side (ϕ)) the collection of its head (resp., side) subformulas. Then

$$
\mu_{x} \cdot \phi=\bigwedge_{\alpha \in \operatorname{Head}(\phi)} \alpha \rightarrow \bigvee_{\beta \in \operatorname{Side}(\phi)} \beta .
$$

If $\operatorname{Head}(\phi)=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $\operatorname{Side}(\phi)=\left\{\beta_{1}, \ldots, \beta_{m}\right\}:$

$$
\begin{aligned}
\mu_{x} \cdot \phi & =\mu_{x} \cdot \alpha_{1} \rightarrow \alpha_{2} \rightarrow \ldots \rightarrow \alpha_{n} \rightarrow \beta_{1} \vee \ldots \vee \beta_{m} \vee x \\
& =\mu_{x} \cdot \bigwedge_{\alpha \in \operatorname{Head}(\phi)} \alpha \rightarrow \bigvee_{\beta \in \operatorname{Side}(\phi)} \beta \vee x \\
& =\bigwedge_{\alpha \in \operatorname{Head}(\phi)} \alpha \rightarrow \mu_{x} . \bigvee_{\beta \in \operatorname{Side}(\phi)} \beta \vee x \\
& =\bigwedge_{\alpha \in \operatorname{Head}(\phi)} \alpha \rightarrow \bigvee_{\beta \in \operatorname{Side}(\phi)} \beta .
\end{aligned}
$$

Plan

A primer on mu-calculi

The intuitionistic μ-calculus

The elimination procedure

Bounding closure ordinals

Closure ordinals

Definition. (Closure ordinal). For \mathcal{K} a class of models and $\phi(x)$ a monotone formula/term, let

$$
\operatorname{cl}_{\mathcal{K}}(\phi)=\text { least ordinal } \alpha \text { such that } \mathcal{M} \models \mu_{x} \cdot \phi=\phi^{\alpha}(\perp) .
$$

In general, $\mathrm{cl}_{\mathcal{K}}(\phi)$ might not exist.

If \mathcal{H} is the class of Heyting algebras and $\phi(x)$ is an intuitionistic formula, then

$$
c l_{\mathcal{H}}(\phi)<\omega .
$$

Upper bounds from fixed-point equations

$$
c 1_{\mathcal{K}}(f \circ g) \leq \operatorname{cl} \mathcal{K}(g \circ f)+1,
$$

$$
\operatorname{cl}_{\mathcal{H}}\left(\phi_{0}\left(\phi_{1}(x), \ldots, \phi_{n}(x)\right)\right) \leq n+1,
$$

$$
\text { when } \phi_{0}\left(y_{1}, \ldots, y_{n}\right) \text { contravariant, }
$$

$$
\operatorname{cl}_{\mathcal{H}}(\phi) \leq \operatorname{card}(H e a d(\phi))+1,
$$

$$
\text { when } \phi \text { is a disjunctive formula, }
$$

$$
\begin{aligned}
& \mathrm{cl}_{\mathcal{K}}(f \circ \Delta) \leq n \cdot \operatorname{cl}_{\mathcal{K}}(g), \\
& \text { when } n=\operatorname{cl}_{\mathcal{K}}(f(x,-)) \text { and } g(x)=\mu_{y} \cdot f(x, y), \\
& \operatorname{cl}_{\mathcal{K}}(f \wedge g) \leq \operatorname{cl}_{\mathcal{K}}(f)+\mathrm{cl}_{\mathcal{H}}(g)-1, \\
& \text { when } f \text { and } g \text { are strong. } .
\end{aligned}
$$

Examples

1. Weakly negative x :

$$
\bigwedge_{i=1, \ldots, n}\left(x \rightarrow a_{i}\right) \rightarrow b_{i}
$$

converges after $n+1$ steps. This upper bound is strict.

Examples

1. Weakly negative x :

$$
\bigwedge_{i=1, \ldots, n}\left(x \rightarrow a_{i}\right) \rightarrow b_{i}
$$

converges after $n+1$ steps. This upper bound is strict.

Examples

1. Weakly negative x :

$$
\bigwedge_{i=1, \ldots, n}\left(x \rightarrow a_{i}\right) \rightarrow b_{i}
$$

converges after $n+1$ steps. This upper bound is strict.
2. Fully positive x :

$$
b \vee \bigvee_{i=1, \ldots, n} a_{i} \rightarrow x
$$

converges after $n+1$ steps. This upper bound is strict.

Examples (II)

- Similarly,

$$
\phi(x):=\bigvee_{i=1, \ldots, n}\left(x \rightarrow a_{i}\right) \rightarrow b_{i}
$$

converges within $n+1$ steps, according to the general theory.

Examples (II)

- Similarly,

$$
\phi(x):=\bigvee_{i=1, \ldots, n}\left(x \rightarrow a_{i}\right) \rightarrow b_{i}
$$

converges within $n+1$ steps, according to the general theory.

Theorem. For any $n \geq 2, \phi(x)$ converges to its least fixed-point within 3 steps.

Back to Ruitenburg's theorem

- Inspection of Ruitenburg's paper shows that

$$
c l_{\mathcal{H}}(\phi)=O(n),
$$

where n is the number of implication symbols in ϕ.

Back to Ruitenburg's theorem

- Inspection of Ruitenburg's paper shows that

$$
\mathrm{cl}_{\mathcal{H}}(\phi)=O(n)
$$

where n is the number of implication symbols in ϕ.

- Given a fully positive formula ϕ, pushing up conjuctions yields a formula

$$
\bigwedge_{i=1, \ldots, k} \delta_{i}, \quad \delta_{i} \text { disjunctive, }
$$

where k might be exponential w.r.t. the size of ϕ.

Back to Ruitenburg's theorem

- Inspection of Ruitenburg's paper shows that

$$
c l_{\mathcal{H}}(\phi)=O(n)
$$

where n is the number of implication symbols in ϕ.

- Given a fully positive formula ϕ, pushing up conjuctions yields a formula

$$
\bigwedge_{i=1, \ldots, k} \delta_{i}, \quad \delta_{i} \text { disjunctive, }
$$

where k might be exponential w.r.t. the size of ϕ.
Our method yields the upper bound

$$
\operatorname{cl}_{\mathcal{H}}(\phi)=\operatorname{cl}_{\mathcal{H}}\left(\bigwedge_{i=1, \ldots, k} \delta_{i}\right) \leq 1-k+\sum_{i=1, \ldots, k} \operatorname{cl}_{\mathcal{H}}\left(\delta_{i}\right)
$$

exponential w.r.t. the size of ϕ.

Closing the gap ?

Problem. Let $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ be disjunctive formulas and put

$$
\phi(x):=\bigwedge_{i=1, \ldots, n} \delta_{i}(x)
$$

Does

$$
\mu_{x} \cdot \phi(x)=\bigwedge_{i=1, \ldots, n} \bigwedge \operatorname{Head}\left(\delta_{i}\right) \rightarrow \bigvee \operatorname{Side}\left(\delta_{i}\right) \leq \phi^{H+1}(\perp)
$$

with $H=\operatorname{card}\left(\bigcup_{i=1, \ldots, n} \operatorname{Head}\left(\delta_{i}\right)\right)$?

- This holds (non trivially) for $n=2$.

Closing the gap ?

Problem. Let $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ be disjunctive formulas and put

$$
\phi(x):=\bigwedge_{i=1, \ldots, n} \delta_{i}(x)
$$

Does

$$
\mu_{x} \cdot \phi(x)=\bigwedge_{i=1, \ldots, n} \bigwedge \operatorname{Head}\left(\delta_{i}\right) \rightarrow \bigvee \operatorname{Side}\left(\delta_{i}\right) \leq \phi^{H+1}(\perp)
$$

with $H=\operatorname{card}\left(\bigcup_{i=1, \ldots, n} \operatorname{Head}\left(\delta_{i}\right)\right)$?

- This holds (non trivially) for $n=2$.
- Not the only plausible conjecture.

After thoughts

- A decision procedure for the Intuitionistic μ-calculus.
- Axiomatization of fixed-points and of some Pitt's quantifiers.
- General theory of fixed-point elimination: no uniform upper bounds for closure ordinals.
- Relevance of strongness
- it looks like Pitt's quantifiers less relevant.
- A working path to understand Ruitenburg's theorem.

Thanks! Questions ?

References I

Alberucci, L. and Facchini, A. (2009).
The modal μ-calculus hierarchy on restricted classes of transition systems.
The Journal of Symbolic Logic, 74(4):1367-1400.
Bradfield, J. C. (1998).
The modal μ-calculus alternation hierarchy is strict.
Theor. Comput. Sci., 195(2):133-153.
Frittella, S. and Santocanale, L. (2014).
Fixed-point theory in the varieties \mathcal{D}_{n}.
In Höfner, P., Jipsen, P., Kahl, W., and Müller, M. E., editors, Relational and Algebraic Methods in Computer Science - 14th International Conference, RAMiCS 2014, Marienstatt, Germany, April 28-May 1,
2014. Proceedings, volume 8428 of Lecture Notes in Computer Science, pages 446-462. Springer.

Ghilardi, S., Gouveia, M. J., and Santocanale, L. (2016).
Fixed-point elimination in the intuitionistic propositional calculus.
In Jacobs, B. and Löding, C., editors, Foundations of Software Science and Computation Structures - 19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 126-141. Springer.

Ghilardi, S. and Zawadowski, M. W. (1997).
Model completions, r-Heyting categories.
Ann. Pure Appl. Logic, 88(1):27-46.
Kozen, D. (1983).
Results on the propositional mu-calculus.
Theor. Comput. Sci., 27:333-354.

References II

Lenzi, G. (1996).
A hierarchy theorem for the μ-calculus.
In auf der Heide, F. M. and Monien, B., editors, Automata, Languages and Programming, 23rd International Colloquium, ICALP96, Paderborn, Germany, 8-12 July 1996, Proceedings, volume 1099 of Lecture Notes in Computer Science, pages 87-97. Springer.

Pitts, A. M. (1992).
On an interpretation of second order quantification in first order intuitionistic propositional logic. J. Symb. Log., 57(1):33-52.

Ruitenburg, W. (1984).
On the period of sequences $\left(a^{n}(p)\right)$ in intuitionistic propositional calculus.
The Journal of Symbolic Logic, 49(3):892-899.
Santocanale, L. (2002).
The alternation hierarchy for the theory of μ-lattices .
Theory and Applications of Categories, 9:166-197.

