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Plan

A primer on mu-calculi
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p~calculi

Add to a given algebraic framework
syntactic least and greatest fixed-point constructors.
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p~calculi

Add to a given algebraic framework
syntactic least and greatest fixed-point constructors.

E.g., the propositional modal p-calculus:

p:=x|-x[T[oAd|L|oVe|Lp|o¢p

| fix-@ | vx-@, when x is positive in ¢.

Interpret the syntactic least (resp. greatest) fixed-point as expected.

[px-@]v ==

least fixed-point of the monotone mapping X > [¢], x/x
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Alternation hierarchies in p-calculi

Let # count the number of alternating blocks of fixed-points.
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Alternation hierarchies in p-calculi

Let # count the number of alternating blocks of fixed-points.

Problem. For a given p-calculus, does there exist n such that, for
each ¢ with f¢ > n, there exists i) with v =1 and fp < n?
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Alternation hierarchies, facts

» The alternation hierarchy for the modal p-calculus is infinite
(there exists no such n) [Lenzi, 1996, Bradfield, 1998].

» |dem for the lattice p-calculus [Santocanale, 2002].

» The alternation hierarchy for the linear p-calculus (ex = Ox)
is reduced to the Biichi fragment (here n = 2) .

» The alternation hierarchy for the modal p-calculus on
transitive frames collapses to the alternation free fragment
(here n = 1.5) [Alberucci and Facchini, 2009].

» The alternation hierarchy for the distributive p-calculus is
trivial (here n = 0) [Kozen, 1983].
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Alternation hierarchies, facts

» The alternation hierarchy for the modal p-calculus is infinite
(there exists no such n) [Lenzi, 1996, Bradfield, 1998].

» |dem for the lattice p-calculus [Santocanale, 2002].

» The alternation hierarchy for the linear p-calculus (ex = Ox)
is reduced to the Biichi fragment (here n = 2) .

» The alternation hierarchy for the modal p-calculus on
transitive frames collapses to the alternation free fragment
(here n = 1.5) [Alberucci and Facchini, 2009].

» The alternation hierarchy for the distributive p-calculus is
trivial (here n = 0) [Kozen, 1983].

A research plan:

Develop a theory explaining why alternation hierarchies collapses.
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p~calculi on generalized distributive lattices

Theorem. [Frittella and Santocanale, 2014] There are lattice
varieties (Nation's varieties)

DoCDiC...CD,C...

with Dy the variety of distributive lattices, such that, on D, and
for any lattice term ¢,

P"2(L) = ¢" L) (= pxd),  @"(L)# S"THL).
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p~calculi on generalized distributive lattices

Theorem. [Frittella and Santocanale, 2014] There are lattice
varieties (Nation's varieties)

DoCDiC...CD,C...

with Dy the variety of distributive lattices, such that, on D, and
for any lattice term ¢,

P"2(L) = ¢" L) (= pxd),  @"(L)# S"THL).

Corollary. The alternation hierarchy of the lattice u-calculus is
trivial on D,,, for each n > 0.
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Plan

The intuitionistic p-calculus
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The intuitionistic p-calculus

After the distributive p-calculus, the next on the list—by Pitt's
quantifiers, we knew that least fixed-points and greatest
fixed-points are definable.

We extend the signature of Heyting algebras (i.e. Intuitionistic
Logic) with least and greatest fixed-point constructors.

Intuitionistic p-terms are generated by the grammar:

¢=x|T[oNQ|L|dVI|d—¢

| pixc-@ | vx- 9, when x is positive in ¢.
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Heyting algebra semantics
We take any provability semantics of IL with fixed points:
» (Complete) Heyting algebras.
» Kripke frames.

» Any sequent calculus for Intuitionisitc Logic (e.g. LJ) plus
Park/Kozen's rules for least and greatest fixed-points:

P/ T d(pxd) dvxg) -6 Y df/x]
L. TR SR ) U F v

Definition. A Heyting algebra is a bounded lattice
H = (H, T,A,L,V) with an additional binary operation —
satisfying

xNy<z iff x<y—z.
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Ruitenburg’s theorem [Ruitenburg, 1984]

Theorem. For each intuitionistic formula ¢, there exists n > 0 such

that ¢"(x) = ¢"2(x).
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Ruitenburg'’s theorem [Ruitenburg, 1984]

Theorem. For each intuitionistic formula ¢, there exists n > 0 such

that ¢"(x) = ¢"2(x).

Then

¢"(L) < ¢"TH(L) < 9"TE(L) = ¢"(L),

so ¢"(L) is the least fixed-point of ¢.

Corollary. The alternation hierarchy for the intuitionistic
p~-calculus is trivial.

NB : Ruitenburg's n might not be the closure ordinal of jiy.¢.
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Peirce, compatibility, strenghs and strongness

Proposition. Peirce's theorem for Heyting algebras.
Every term ¢ is compatible. In particular, for v, x arbitrary terms,
the equation

Pl/x] A x =l Ax/x] A x.
holds on Heyting algebras.

Corollary. Every term ¢ monotone in x is strong in x. That is, any
the following equivalent conditions

o/ Ax < Ol Ax/x], ¥ = x < olY/x] = dlx/x],

hold, for any terms % and Y.
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Plan

The elimination procedure

12/32



Greatest fixed-points

Proposition. On Heyting algebras, we have

Vx-¢ = (b(—[_) .
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Greatest fixed-points

Proposition. On Heyting algebras, we have

Vx-¢) = qb(—l—) .

Using the deduction theorem and Pitts’ quantifiers:

V. p(X) = Tn.(x Ax = @(x)) = T.(x A p(x)) = o(T).
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Greatest fixed-points

Proposition. On Heyting algebras, we have

Vx-¢) = qb(—l—) .

Using the deduction theorem and Pitts’ quantifiers:

V. p(X) = Tn.(x Ax = @(x)) = T.(x A p(x)) = o(T).

Using strongness:

(T)=d(T)AG(T) < (T A(T)) = ¢*(T).
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Greatest solutions of systems of equations

Proposition. On Heyting algebras, a system of equations

X1 = ¢1(X1, e ,Xn)

Xp = ¢n(X1, s 7Xn)

has a greatest solution obtained by iterating

¢ = <¢17---7¢n>

n times from T.

Proof. Using the Bekic property.
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Least fixed-points: splitting the roles of variables

Due to

ux.gb(x, X) = Mx-ﬂy-¢(x7y)

15/32



Least fixed-points: splitting the roles of variables

Due to

Mx'(b(xax) = MX-Ny-¢(X7Y)

we can separate computing the least fixed-points w.r.t:

weakly negative variables: variables that appear within the
left-hand-side of an implication,

fully positive variables: those appearing only within the
right-hand-side of an implication.
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Weakly negative least fixed-points: an example

Use

px-(fog)(x)=f(uy.(gof)(y))
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Weakly negative least fixed-points: an example

Use

px-(fog)(x)=f(uy.(gof)(y))

to argue that:

px-[(x = a) = b]l=[v,.(y = b)—>a]l—=b
=[(T—=b)—a]l—b
=[b—a]l—b.
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Weakly negative least fixed-points:
reducing to greatest fixed-points

If each occurrence of x in ¢ is weakly negative, then
P(x) = do[pr(x)/y1, - - En(X)/yn]
with ¢o(y1, ..., yn) negative in each y;.

Due to

px-(Fog)(x) = f(py (g F)(y))
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Weakly negative least fixed-points:
reducing to greatest fixed-points

If each occurrence of x in ¢ is weakly negative, then
P(x) = do[P1(x) /1, -, &n(x)/yal
with ¢o(y1, ..., yn) negative in each y;.

Due to

px-(Fog)(x) = f(py (g F)(y))

we have

ﬂx-QS(X) = NX'( ¢0 © <¢17 L) ¢n> )(X)

= ¢0( ¥y ((D15 -+ Pn) © G0 )(y1, - - -
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Interlude: least fixed-points of strong functions

If f and f;, i € I, are strong, then

tx-a N f(x) =aA ux.f(x),
Ux-/\ fl(X) = /\Mx-fi(x)7
i€l
tx.a — f(x) = a— px.f(x).
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Strongly positive fixed-points: disjunctive formulas

The equation

e \ ) = A\ e F(%)

icl icl

allows to push least fixed-points down through conjunctions.
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Strongly positive fixed-points: disjunctive formulas

The equation
e NG = N\ ()
icl iel
allows to push least fixed-points down through conjunctions.
Once all conjunctions have been pushed up in formulas, we are left to

compute least fixed-points of disjunctive formulas, generated by the
grammar:

p=x|BVola—=o| \/ ¢
i=1,...,n

where « and 3 do not contain the variable x.

We call « an head subformula and 8 a side subformula.
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Least fixed-points of inflating functions

All functions f denoted by such formula ¢ are (monotone and)
inflating:

x < f(x).

Let f;, i =1,...,n, be a collection of monotone inflating functions.
Then

vV fi(x) =pxfio.. o fy)(x).

11,7
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Least fixed-points of disjunctive formulas

Proposition. Let ¢ be a disjunctive formula, with Head(¢) (resp.,
Side(¢)) the collection of its head (resp., side) subformulas. Then

Hx-p = /\ a— \/ 5.

a€Head($) BESide(p)
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Least fixed-points of disjunctive formulas

Proposition. Let ¢ be a disjunctive formula, with Head(¢) (resp.,
Side(¢)) the collection of its head (resp., side) subformulas. Then

Px-@ = /\ o= \/ B.

a€Head($) BESide(p)

If Head(¢) = { e, ..., } and Side(¢) = { Br,. .., Bm }:

Py = pix.1 > Q= ... > ap—> 1 V...VBnVX

= lx- /\ o — \/ BV x

a€Head() BESide()

= /\ Q= fix. \/ BV x

a€Head(¢) BESide(¢)

:/\a—)\/ﬁ.

a€Head(¢) BeSide(¢p)
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Plan

Bounding closure ordinals
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Closure ordinals

Definition. (Closure ordinal). For K a class of models and ¢(x) a
monotone formula/term, let

cli(¢) = least ordinal « such that M | py.¢ = ¢*(L).

In general, clx(¢) might not exist.

If H is the class of Heyting algebras and ¢(x) is an intuitionistic
formula, then

cly(¢) <w.
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Upper bounds from fixed-point equations

cli(fog)<clkg(gof)+1,

cly(po(P1(x), ..., dn(x))) <n+1,

when ¢o(y1, ..., yn) contravariant,

cly(¢) < card(Head(¢)) + 1,
when ¢ is a disjunctive formula,

clie(foA) < n-clk(g),
when n = cli(f(x,-)) and g(x) = u,.f(x,y),

cle(f Ag) < cli(f) + clun(g) — 1,
when f and g are strong.
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Examples

1. Weakly negative x:

/\ (X — a,-) — b,'
i=1,...,n

! ERREE)

converges after n + 1 steps. This upper bound is strict.
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Examples

1. Weakly negative x:

/\ (X — a,-) — b,'
i=1,...,n

1 ERREE)

converges after n + 1 steps. This upper bound is strict.

2. Fully positive x:

bv \/ a — X

i=1,...,n

converges after n+ 1 steps. This upper bound is strict.
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Examples (I1)

> Similarly,

o(x) = \/ (x = aj) = b;
i=1,...,n

]

[RRRE}

converges within n+ 1 steps, according to the general theory.
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Examples (I1)

> Similarly,

o(x) = \/ (x = aj) = b;
i=1,...,n

]

[RRRE}

converges within n+ 1 steps, according to the general theory.

Theorem. For any n > 2, ¢(x) converges to its least fixed-point
within 3 steps.
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Back to Ruitenburg's theorem

> Inspection of Ruitenburg's paper shows that

clu(¢) = O(n),

where n is the number of implication symbols in ¢.
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Back to Ruitenburg's theorem

> Inspection of Ruitenburg's paper shows that

clu(¢) = O(n),

where n is the number of implication symbols in ¢.

» Given a fully positive formula ¢, pushing up conjuctions yields
a formula

/\ 6, & disjunctive,
i=1,....k

where k might be exponential w.r.t. the size of ¢.

Our method yields the upper bound

cu(g) =clu( N\ o) <1—k+ > clu(d),

i=1,.. k i=1,... k

exponential w.r.t. the size of ¢.
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Closing the gap ?

Problem. Let 01,05, ...,68, be disjunctive formulas and put
/\ i)
i=1,...,n
Does

fix- (X /\ /\ Head(6;) — \/ Side(5;) < ¢"t(L),

i=1,...,n

with H = card(UJ,_; _,Head(d;))?

» This holds (non trivially) for n = 2.
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Closing the gap ?

Problem. Let 01,05, ...,68, be disjunctive formulas and put
/\ i)
i=1,...,n
Does

ped(x) =\ /\ Head(6;) = \/ Side(5;) < ¢"*1(L),

i=1,...,n

with H = card(UJ,_; _,Head(d;))?

» This holds (non trivially) for n = 2.

» Not the only plausible conjecture.
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After thoughts

v

A decision procedure for the Intuitionistic p-calculus.

v

Axiomatization of fixed-points and of some Pitt's quantifiers.

v

General theory of fixed-point elimination: no uniform upper
bounds for closure ordinals.

v

Relevance of strongness
— it looks like Pitt's quantifiers less relevant.

v

A working path to understand Ruitenburg's theorem.
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Thanks ! Questions 7
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