Logic of resources and capabilities

Apostolos Tzimoulis

joint work with Marta Bílková, Giuseppe Greco, Alessandra Palmigiano and
Nachoem Wijnberg

TACL 2017 - Prague

Motivation

- Organizations are social units of agents structured and managed to meet a need, or pursue collective goals.
- Competitive advantage lends itself to be explained terms of agency, knowledge, goals, capabilities and inter-agent coordination.
- Resource-based view: Central role in determining the success of an organization is played by the acquisition, management, and transformation of resources within that organization.

Main features

- STIT-logic approach of capabilities captured via modalities and use of resources and their manipulation to provide a concrete handle on the notion of capabilities.
- Constructive character guarantees that each theorem translates into an effective procedure.

Language

$$
\begin{gathered}
\alpha::=a \in \text { AtRes }|1| 0|\alpha \cdot \alpha| \alpha \sqcup \alpha \mid \alpha \sqcap \alpha, \\
A::=p \in \operatorname{AtProp}|\mathrm{\top}| \perp|A \vee A| A \wedge A|A \rightarrow A| \alpha \triangleright A|\diamond A| \triangleleft \alpha \mid \\
\alpha \triangleright \alpha .
\end{gathered}
$$

- $\diamond A$: 'the agent is able to bring about state of affairs A '
- $\checkmark \alpha$: 'the agent is in possession of resource α '
- $\alpha \triangleright A$: 'whenever resource α is in possession of the agent, using α the agent is capable to bring about A '
- $\alpha \triangleright \beta$: 'the agent is capable of getting β from α, whenever in possession of α,

The logic of resources and capabilities

Axiom schemas for \diamond and \diamond

$$
\begin{array}{ll}
\text { D1. } \diamond(A \vee B) \leftrightarrow \diamond A \vee \diamond B & \text { D3. } \quad \boxtimes(\alpha \sqcup \beta) \leftrightarrow \boxtimes \alpha \vee \boxtimes \beta \\
\text { D2. } \diamond \perp \leftrightarrow \perp & \text { D4. } \diamond 0 \leftrightarrow \perp
\end{array}
$$

Axiom schemas for \triangleright and \triangleright
B1. $(\alpha \sqcup \beta) \triangleright A \leftrightarrow \alpha \triangleright A \wedge \beta \triangleright A \quad$ B4. $\quad(\alpha \sqcup \beta) \triangleright \gamma \leftrightarrow \alpha \triangleright \gamma \wedge \beta \triangleright \gamma$

B2. $0 \triangleright A$
B3. $\alpha \triangleright \beta \triangleright A \rightarrow \alpha \cdot \beta \triangleright A$

Interaction axiom schemas
BD1. $\boxtimes \alpha \wedge \alpha \triangleright A \rightarrow \diamond A$
BD2. $\alpha \triangleright \beta \rightarrow \alpha \triangleright \boxtimes \beta$

B5. $0 \triangleright \alpha$
B6. $\alpha \triangleright(\beta \sqcap \gamma) \leftrightarrow \alpha \triangleright \beta \wedge \alpha \triangleright \gamma$
B7. $\alpha \triangleright 1$

The logic of resources and capabilities

Pure-resource entailments schemas

R1. \sqcup and \sqcap are commutative, associative, idempotent, and distribute over each other;
R2. . is associative with unit 1 ;
R3. $\alpha \vdash 1$ and $0 \vdash \alpha$
R4. $\alpha \cdot(\beta \sqcup \gamma) \vdash(\alpha \cdot \beta) \sqcup(\alpha \cdot \gamma)$ and $(\beta \sqcup \gamma) \cdot \alpha \vdash(\beta \cdot \alpha) \sqcup(\gamma \cdot \alpha)$.
and closed under modus ponens, uniform substitution and the following rules:

$$
\begin{array}{cccc}
\frac{\alpha \vdash \beta}{\alpha \cdot \gamma \vdash \beta \cdot \gamma} & \frac{A \vdash B}{\alpha \triangleright A \vdash \alpha \triangleright B} & \frac{A \vdash B}{\diamond A \vdash \diamond B} & \frac{\alpha \vdash \beta}{\gamma \triangleright \alpha \vdash \gamma \triangleright \beta} \\
\frac{\alpha \vdash \beta}{\gamma \cdot \alpha \vdash \gamma \cdot \beta} & \frac{\alpha \vdash \beta}{\beta \triangleright A \vdash \alpha \triangleright A} & \frac{\alpha \vdash \beta}{\diamond \alpha \vdash \boxtimes \beta} & \frac{\alpha \vdash \beta}{\beta \triangleright \gamma \vdash \alpha \triangleright \gamma}
\end{array}
$$

COMPLETENESS, CANONICITY AND DISJUNCTION PROPERTY

Heterogeneous LRC-algebras are tuples of the form

$$
F=(\mathbb{A}, \mathbb{Q}, \triangleright, \diamond, \triangleright, \triangleright)
$$

where

- \mathbb{A} is a Heyting algebra,
- $\mathbb{Q}=(Q, \sqcup, \sqcap, \cdot, 0,1)$ is a bounded distributive lattice with binary join-preserving operator \cdot with unit 1 .
- $\triangleright: \mathbb{Q} \times \mathbb{A} \rightarrow \mathbb{A}, \diamond: \mathbb{A} \rightarrow \mathbb{A}, \triangleright: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{A}, \boxtimes: \mathbb{Q} \rightarrow \mathbb{A}$.
- Lindenbaum-Tarski argument guarantees completeness
- Standard argument guarantees disjunction property

Theorem

The axioms of LRC are canonical. Hence, for every heterogenerous $L R C$-algebra F, its canonical extension F^{δ} is a perfect LRC-algebra. Hence, the logic LRC is complete w.r.t. the class of perfect LRC-algebras.

Display-style calculus

Structural and operational symbols for pure Res-connectives:

Str.	\odot					\sqsupset		(ᄃ)	
Op.	-	\square	\sqcup	(.					
)	(/.)	(\backslash)	(\dagger)	(/」)	(/п)				

Structural and operational symbols for the modal operators:

Str.	\circ		\triangleright		${ }^{\circ}$	
Op.	\diamond			\triangleright	\diamond	

Structural and operational symbols for the adjoints and residuals of the modal operators:

Str.	-	-	-	A	$\stackrel{\rightharpoonup}{*}$
Op.	(■)	($)$	(II)	(A)	($\stackrel{\text {) }}{ }$

Introduction rules

$$
\begin{array}{ll}
\frac{\Gamma \vdash \alpha}{\alpha \triangleright A \vdash \Gamma \triangleright X} \triangleright_{L} & \frac{X \vdash \alpha \triangleright A}{X \vdash \alpha \triangleright A} \triangleright_{R} \\
\frac{\Gamma \vdash \alpha}{\alpha \triangleright \alpha \vdash \Gamma \triangleright \Delta} \triangleright_{L} & \frac{\Gamma \vdash \alpha \triangleright \alpha}{\Gamma \vdash \alpha \triangleright \alpha} \triangleright_{R}
\end{array}
$$

Rules corresponding to axioms

$$
\begin{aligned}
& \frac{\Gamma \vdash(Y>\Delta),(Z>\Delta)}{\Gamma \vdash(Y ; Z)-\Delta} \mathrm{B} 4 \quad \frac{\Gamma \vdash(Y \vee W),(Z \triangleright W)}{\Gamma+(Y ; Z)-W} \mathrm{~B} 1 \\
& \text { в6 } \frac{(\Gamma \boldsymbol{\Lambda} X),(\Gamma \boldsymbol{A} Y) \vdash \Delta}{\Gamma \mathbf{\Lambda}(X ; Y) \vdash \Delta} \quad \frac{X \vdash \Gamma \triangleright(\Delta \triangleright Y)}{X \vdash \Gamma \odot \Delta \triangleright Y} \text { вз } \\
& \frac{X \vdash \Gamma \triangleright \bullet Y}{X \vdash \odot \Gamma>Y} \text { BD1 } \quad \frac{X+\Gamma \triangleright \bullet Y}{X+\Gamma \triangleright Y} \text { BD2 }
\end{aligned}
$$

Display rules ... But

Notice the argument of the second coordinate of \triangleright cannot be displayed

Cut rules

$$
\frac{(X+Y)[A]^{\text {succ }} A \vdash Z}{(X+Y)[Z / A]^{\text {succ }}} \quad \frac{\Gamma \vdash \alpha A+\Delta}{\Gamma \vdash \Delta}
$$

Canonical Cut-elimination and subformula property
Follow from a general meta-theorem.

Homework correction

"I have some paperwork to catch up. If I'm not back in two days, organize a search and rescue team!"

Capabilities		initial state	planning
$\alpha \triangleright_{\mathrm{c}} P_{\alpha}$	$\beta \triangleright_{\mathrm{c}} P_{\beta}$	$\boxtimes_{\mathrm{c}} \alpha$	$M_{\beta} \rightarrow \boxtimes_{\mathrm{c}} \beta$
$\alpha \triangleright_{\mathrm{d}} M_{\alpha}$	$\beta \triangleright_{\mathrm{d}} M_{\beta}$	$\diamond_{\mathrm{d}} \beta$	$P_{\alpha} \rightarrow \boxtimes_{\mathrm{d}} \alpha$

$$
\mathrm{Ex}_{\mathrm{i}} \frac{X \vdash Y}{\mathrm{o}_{\mathrm{i}} X \vdash Y}
$$

The wisdom of the crow

$$
\frac{\Sigma \odot \Sigma \vdash \Omega}{\Sigma \vdash \Omega} \quad \frac{(\Gamma \boldsymbol{\Lambda} X) \odot(\Pi \boldsymbol{\Delta} Y) \vdash \Delta}{(\Gamma \odot \Pi) \boldsymbol{\Delta}(X ; Y) \vdash \Delta} \quad \frac{(\Gamma \boldsymbol{\Delta} X) \boldsymbol{\Delta} Y \vdash \Delta}{\Gamma \boldsymbol{\Lambda}(X ; Y) \vdash \Delta}
$$

The gift of the magi

$$
\triangleleft^{1} \sigma \wedge \diamond^{2} \xi \wedge[\sigma, \xi] \triangleright \chi \rightarrow \diamond \diamond^{2} \chi
$$

which is equivalent on perfect LRC-algebras to the following analytic rule:

$$
\frac{\circ \Phi^{2}[\Sigma, \Xi] \boldsymbol{\Lambda} X \vdash Y}{\Phi^{1} \Sigma ; \Phi^{2} \Xi ; X \vdash Y} \mathrm{RR}
$$

