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A logic is a pair (X,F) with
— X a signature of finitary connectives
- FC P(Fmg(X)) x Fmg(X) monotonous, increasing, idempotent,
substitution invariant and finitary

Equivalently, one has a structural, finitary closure operator on Fmy(X).
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The closure operator determines, and is determined by, the lattice of
theories Th C P(Fmx(X)). This lattice is closed under arbitrary infima and
directed suprema.

Finitarity: The lattice is an algebraic lattice. Every element is the supremum
of the finitely presented elements

Structurality:

Fms(X) Th—> P(Fms (X))
U\L Ul'ThT ' TUI
Fmy (X) Th—> P(Fms (X))

The inclusion of the theories is a natural transformation.
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Finitary filter pairs

Definition: Let ¥ be a signature.
(i) A (finitary) filter pairis a pair (G, i) consisting of
— a functor G: X-Alg°? — Alglat

— a natural transformation i: G — P(—) which, at each object,
preserves arbitrary infima and directed suprema.
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Finitary filter pairs

Definition: Let ¥ be a signature.
(i) A (finitary) filter pairis a pair (G, i) consisting of
— a functor G: X-Alg°? — Alglat

— a natural transformation i: G — P(—) which, at each object,
preserves arbitrary infima and directed suprema.

A G(A) —— P(A)
hl h*T Th—l
B G(B) ——P(B)

(ii) The logic associated to a filter pair (G, i) is the logic associated to the
algebraic lattice given by the image i(G(Fmx(X))) C p(Fmx(X)).
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Proposition:

(i) The logic associated to a filter pair is finitary and structural.

(ii) If Lis a logic, then there is a filter pair (Fig, i), given by
Y-Alg>A —  (ia: FiL(A) := {LAilters in A} — P(A))

The logic associated to this filter pair is L.
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Y-Alg>A —  (ia: FiL(A) := {LAilters in A} — P(A))

The logic associated to this filter pair is L.

Note:
— preimages of L-filters under algebra homomorphisms are L-filters.
Hence Fi; is a well-defined functor and i/ a natural transformation.
— every logic comes from a filter pair.
— the associated logic only depends on the image of irmy(x)-
— a filter pair can be seen as a presentation of a logic.
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Proposition:

(i) The logic associated to a filter pair is finitary and structural.

(ii) If Lis a logic, then there is a filter pair (Fig, i), given by
Y-Alg>A —  (ia: FiL(A) := {LAilters in A} — P(A))

The logic associated to this filter pair is L.

Note:

— preimages of L-filters under algebra homomorphisms are L-filters.
Hence Fi; is a well-defined functor and i/ a natural transformation.

— every logic comes from a filter pair.

— the associated logic only depends on the image of irmy(x)-

— a filter pair can be seen as a presentation of a logic.

— ia always maps into filters of the associated logic.
But for A # Fmy(X) not every filter needs to arise in this way.
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Congruence filter pairs

Let K be a quasivariety. Then
Cok(A) := {congruences 0 on A s.t. A/f € K}

is a functor X-Str°P — AlglLat.

A filter pair of the form (Cok, i) is called congruence filter pair.

Theorem:
The logic presented by a congruence filter pair (Cog, i) with i injective is
algebraizable with associated quasivariety K.
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Equational filter pairs

Theorem:
Let K be a quasivariety, and 7 = (€, J) a set of equations Then

(G: A— Conk(A), i:0—{acAle(a)=45(a)in A/0})

defines a filter pair. Such a filter pair is called equational filter pair.

Example:

Let L be an algebraizable logic with associated quasivariety K. Then by
Blok-Pigozzi there exists a set of equations 7 inducing the isomorphism
between congruences and theories
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A bit of the Leibniz hierarchy

Algebraizable
< T
Equivalential weakly algebrizable
= - —
Protoalgebraizable Truth — equational
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Logics from equational filter pairs

Logics coming from equational filter pairs need not be protoalgebraic,
truth-equational or self-extensional.

Example: ¥ = {V,A, -, T, L}, K=variety of pseudocomplemented lattices,
7= (,x, T) yields IPC*, the implicationless fragment of intuitionistic
propositional calculus. By [Blok-Pigozzi, Algebraizable logics, Thm. 5.13]
this is not protoalgebraic.
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truth-equational or self-extensional.

Example: ¥ = {V,A, -, T, L}, K=variety of pseudocomplemented lattices,
7= (,x, T) yields IPC*, the implicationless fragment of intuitionistic
propositional calculus. By [Blok-Pigozzi, Algebraizable logics, Thm. 5.13]
this is not protoalgebraic.

Example: ¥ = {s[I}, K = X-Str, 7 = (x,s(x)). The absolutely free
algebra Fmy(X) consists of countably many copies of the natural numbers
with s the successor operation. Thus there are no s-fixed points in
Fmy(X)/0min = Fmx(X), i.e. the set of theorems

i(Omin) = {p € Fms(X) | ¢ = s(¢)} is empty. Hence the logic is neither
protoalgebraic nor truth-equational.
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Logics from equational filter pairs

Proposition: Let (Cok, i) be an equational filter pair given by equations
T = (,¢€), and let L be the associated logic.

(i) L has an algebraic semantics in K, i.e.
FELp e {6(7) =e(r) 7 €T} Fi d(p) = e(v)

(ii) If i is injective, then L is algebraizable with 7 being one half of an
algebraizing pair.

(i) If i is surjective onto filters, then L is truth-equational.
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Craig interpolation

Let X be a signature and K C ¥ — Str a class of algebras.

Theorem:

Let (Cok, i) be an equational filter pair and L the associated logic. If K has
the matrix-amalgamation property restricted to reduced matrices, then L
has the Craig interpolation property.
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Craig interpolation

Let X be a signature and K C ¥ — Str a class of algebras.

Theorem:

Let (Cok, i) be an equational filter pair and L the associated logic. If K has
the matrix-amalgamation property restricted to reduced matrices, then L
has the Craig interpolation property.

Theorem:

Let (Cok, i) be an equational filter pair and assume the associated logic L is
truth-equational. If K has the amalgamation property, then L has the Craig
interpolation property.

(Example: if the equation is of the form (x, T), the logic is always
truth-equational.)
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A pattern of application: Varying equations

Suppose ¥ D {A,V, T, L, =}, K is a quasivariety of lattices and we are
interested in the assertional logic L given by (x, T).

We can study the logics associated to new equations, e.g. (x, —x),
(x AN=x, L), (xV—=x, T) or (x, —x).
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A pattern of application: Varying equations

Suppose ¥ D {A,V, T, L, =}, K is a quasivariety of lattices and we are
interested in the assertional logic L given by (x, T).

We can study the logics associated to new equations, e.g. (x, —x),
(x A=x, L), (xV=x,T) or (x,—x).

Theorem: Suppose we know that L is equivalential, has the deduction
detachment peoperty and satisfies Craig interpolation. Then K has the
amalgamation property.

Now to establish Craig interpolation for the new logics, it suffices to check
matrix amalgamation for the new reduced matrices...
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Reminder on Galois connections

Adjoint functor theorem for posets:

Let L: X — Y be an order preserving map of posets, X having arbitrary
joins.

Then L has a right adjoint R: Y — X iff it preserves all joins. It is then
given by R(y) := V{x | L(x) < y}.

Dually a function from a poset with all meets has a left adjoint iff it
preserves all meets. It is then given by L(x) := A{y | x < R(y)}.

(see e.g. Taylor, Practical foundations for mathematics, Thm.3.6.9)
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Filter pairs and Galois connections

Corollary:
Let (G, ) be a filter pair. Then i has a left adjoint =.

GA) L P(A)

The closure operator of the associated logic L is irmy(x) © ZFmy(X)-

More generally, for every algebra A we get two g-matrices, (A, Fi (A)) and
(A, {(ia 0 =a)-closed sets}).
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Consider an equational filter pair (Cox, i):
The left adjoint to i: Cox — p(A), 0 — {a | (6(a),e(a)) € 6} is given by

=(F) = [the K-congruence generated by {(d(a),e(a)) | a € F}]

The associated logic L is protoalgebraic iff 2 is monotonous iff € preserves
arbitrary infima iff Q has a left adjoint ¢

(o) = NF0cQF)}
= (WF | F is union of f-equivalence classes}
= |J{f-equivalence classes of theorems of /}

= Ullelo | 0+ ¢}
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Consider an equational filter pair (Cox, i):
The left adjoint to i: Cox — p(A), 0 — {a | (6(a),e(a)) € 6} is given by

=(F) = [the K-congruence generated by {(d(a),e(a)) | a € F}]

The associated logic L is protoalgebraic iff 2 is monotonous iff € preserves
arbitrary infima iff Q has a left adjoint ¢

(o) = NF0cQF)}
= (WF | F is union of f-equivalence classes}
= |J{f-equivalence classes of theorems of /}

= Ullelo | 0F ¢}
(Compare: If the equation is given by (, T), then i(6) = [T]p)
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Proposition:
Let (Cok, i) be an equational filter pair. Let A be a X-algebra and
0 € Cok(A) a congruence on A. Then Z4(i(0)) C 0 C Qa(ia(0))
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Proposition:
Let (Cok, i) be an equational filter pair. Let A be a X-algebra and
0 € Cok(A) a congruence on A. Then Z4(i(0)) C 0 C Qa(ia(0))

Proposition: The following are equivalent:

(i) Both of the inclusions are equalities
(i) One of the inclusions is an equality
(iii) 7 is injective
If these conditions hold, then:

e L is algebraizable, with associated quasivariety K
e Q===;"1
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A. Further bridge theorems like Craig interpolation.
B. Infinitary version (work in progress)

C. Further examples of filter pairs (e.g. relation to non-deterministic
semantics)
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