Generalized bunched implication algebras
(Directed to the memory of Bjarni Jónsson)

Nick Galatos (joint work with P. Jipsen)
University of Denver
ngalatos@du.edu

June, 2016
Structure of the talk

- Motivation and examples
- Algebraic Theory
- Proof Theory
Structure of the talk

- Motivation and examples
- Algebraic Theory
- Proof Theory

Bunched Implication Logic

- Motivated by separation logic used in pointer management in computer science.
- It is a substructural logic and it combines an additive (Heyting) implication and a multiplicative (linear) implication.
A *residuated lattice*, is an algebra $\mathbf{L} = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid and
- for all $a, b, c \in L$,

$$ab \leq c \iff b \leq a \backslash c \iff a \leq c / b.$$
A **residuated lattice**, is an algebra \(L = (L, \land, \lor, \cdot, \backslash, /, 1) \) such that

- \((L, \land, \lor)\) is a lattice,
- \((L, \cdot, 1)\) is a monoid and
- for all \(a, b, c \in L \),

\[
ab \leq c \iff b \leq a \backslash c \iff a \leq c / b.
\]

If \(xy = x \land y \) then \(L \) is a **Brouwerian algebra** (Heyting algebra, if there is a bottom element). In this case we write \(x \rightarrow y \) for \(x \backslash y = y / x \).
A **residuated lattice**, is an algebra $\mathbb{L} = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid and
- for all $a, b, c \in L$,

$$ab \leq c \iff b \leq a \backslash c \iff a \leq c / b.$$

If $xy = x \wedge y$ then \mathbb{L} is a **Brouwerian algebra** (Heyting algebra, if there is a bottom element). In this case we write $x \rightarrow y$ for $x \backslash y = y / x$.

In every residuated lattice multiplication distributes over join, so in a Heyting algebra the lattice is distributive.
A **residuated lattice**, is an algebra $L = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid and
- for all $a, b, c \in L$,

$$ab \leq c \iff b \leq a \backslash c \iff a \leq c/b.$$

If $xy = x \wedge y$ then L is a **Brouwerian algebra** (Heyting algebra, if there is a bottom element). In this case we write $x \rightarrow y$ for $x \backslash y = y / x$.

In every residuated lattice multiplication distributes over join, so in a Heyting algebra the lattice is distributive.

In general the lattice reduct need not be distributive, as in the lattice of ideals of a ring.

$I \wedge J = I \cap J$,
$I \vee J = I + J$, and
IJ contains finite sums of products ij, as usual.
Also, the lattice could end up being distributive, even if multiplication is not meet.
Also, the lattice could end up being distributive, even if multiplication is not meet.

- MV-algebras
- BL-algebras
- Lattice-ordered groups
- Relation algebras
Also, the lattice could end up being distributive, even if multiplication is not meet.

- MV-algebras
- BL-algebras
- Lattice-ordered groups
- Relation algebras

A *Generalized Bunched Implication algebra* (or *GBI algebra*)

\[\mathbf{A} = (A \wedge, \vee, \cdot, \backslash, /, 1, \to, \top) \]

supports two residuated structures: a residuated lattice \((A, \wedge, \vee, \cdot, \backslash, /, 1)\) and a Browerian/Heyting algebra \((A, \wedge, \vee, \to, \top)\).
B. Jóhnsson and A. Tarski studied relation algebras inspired by the algebra of binary relations on a set.
B. Jóhnsson and A. Tarski studied relation algebras inspired by the algebra of binary relations on a set. B. Jóhnsson further studied residuated structures with C. Tsinakis (Boolean monoids).
B. Jóhnsson and A. Tarski studied relation algebras inspired by the algebra of binary relations on a set. B. Jóhnsson further studied residuated structures with C. Tsinakis (Boolean monoids). Our interest with GBI algebras partly stems from these contributions.
B. Jóhnsson and A. Tarski studied relation algebras inspired by the algebra of binary relations on a set. B. Jóhnsson further studied residuated structures with C. Tsinakis (Boolean monoids). Our interest with GBI algebras partly stems from these contributions.

Given a set P for binary relations $R, S \in \mathcal{P}(P \times P)$, we define

- $R \land S = R \cap S$
- $R \lor S = R \cup S$
- $R \cdot S = R \circ S$ (relational composition)
- $R \to S = R^c \cup S = (R \cap S^c)^c$
- $R \setminus S = (R^c \circ S^c)^c$ (where R^c is the converse of R)
- $S/R = (S^c \circ R^c)^c$
B. Jóhnsson and A. Tarski studied relation algebras inspired by the algebra of binary relations on a set. B. Jóhnsson further studied residuated structures with C. Tsinakis (Boolean monoids). Our interest with GBI algebras partly stems from these contributions.

Given a set P for binary relations $R, S \in \mathcal{P}(P \times P)$, we define

- $R \land S = R \cap S$
- $R \lor S = R \cup S$
- $R \cdot S = R \circ S$ (relational composition)
- $R \rightarrow S = R^c \cup S = (R \cap S^c)^c$
- $R \setminus S = (R^\cup \circ S^c)^c$ (where R^\cup is the converse of R)
- $S/R = (S^c \circ R^\cup)^c$

This is an example of a GBI algebra, and part of is special nature is the fact that the Heyting algebra reduct is actually Boolean. We consider generalizations of these algebras called weakening relation algebras.
Instead of a set P we begin with a poset $P = (P, \leq)$. (We could recover the previous case by taking the discrete order.)
Instead of a set P we begin with a poset $P = (P, \leq)$. (We could recover the previous case by taking the discrete order.)

We define the set $Wk(P)$ of \leq-weakening relations, that is of all binary relations R on P such that $a \leq b \mathrel{R} c \leq d$ implies $a \mathrel{R} d$, for all $a, b, c, d \in P$.
Instead of a set \(P \) we begin with a poset \(P = (P, \leq) \). (We could recover the previous case by taking the discrete order.)

We define the set \(Wk(P) \) of \(\leq \)-\textit{weakening relations}, that is of all binary relations \(R \) on \(P \) such that \(a \leq b \Rightarrow c \leq d \Rightarrow a R d \), for all \(a, b, c, d \in P \). In other words \(Wk(P) = O(P \times P^\partial) \), where \(O \) denotes the downset operator.
Weakening relation algebras

Instead of a set P we begin with a poset $P = (P, \leq)$. (We could recover the previous case by taking the discrete order.)

We define the set $Wk(P)$ of \leq-weakening relations, that is of all binary relations R on P such that $a \leq b \ R \ c \leq d$ implies $a \ R \ d$, for all $a, b, c, d \in P$. In other words $Wk(P) = \mathcal{O}(P \times P^\partial)$, where \mathcal{O} denotes the downset operator.

On linearly ordered sets, such relations have graphs that are left-up closed. Some can be obtained by graphs of functions by closing left-up.
Instead of a set P we begin with a poset $P = (P, \leq)$. (We could recover the previous case by taking the discrete order.)

We define the set $Wk(P)$ of \leq-weakening relations, that is of all binary relations R on P such that $a \leq b R c \leq d$ implies $a R d$, for all $a, b, c, d \in P$. In other words $Wk(P) = O(P \times P^\partial)$, where O denotes the downset operator.

On linearly ordered sets, such relations have graphs that are left-up closed. Some can be obtained by graphs of functions by closing left-up.

We now explain why $Wk(P)$ supports a structure of a GBI-algebra, under union and intersection, and composition of relations.
A weak conucleus on a residuated lattice A is an interior operator σ on A such that $\sigma(x)\sigma(y) \leq \sigma(xy)$, for all $x, y \in A$.
A weak conucleus on a residuated lattice \mathbf{A} is an interior operator σ on \mathbf{A} such that $\sigma(x) \sigma(y) \leq \sigma(xy)$, for all $x, y \in \mathbf{A}$. Then $\sigma[\mathbf{A}] = (\sigma[\mathbf{A}], \wedge, \vee, \cdot, \backslash, / \sigma)$ is a residuated lattice-ordered semigroup, where $x \cdot_{\sigma} y = \sigma(x \cdot y)$, where $\cdot \in \{\wedge, \backslash, /\}$.
A **weak conucleus** on a residuated lattice A is an interior operator σ on A such that $\sigma(x)\sigma(y) \leq \sigma(xy)$, for all $x, y \in A$. Then $\sigma[A] = (\sigma[A], \land_\sigma, \lor_\sigma, \cdot_\sigma, \\setminus_\sigma, /_\sigma)$ is a residuated lattice-ordered semigroup, where $x \cdot_\sigma y = \sigma(x \cdot y)$, where $\cdot \in \{\land, \setminus, /\}$. We are interested in the cases where this algebra also has an identity element e and hence $(\sigma[A], e)$ is a residuated lattice.
A weak conucleus on a residuated lattice A is an interior operator σ on A such that $\sigma(x) \sigma(y) \leq \sigma(xy)$, for all $x, y \in A$. Then $\sigma[A] = (\sigma[A], \land, \lor, \cdot, \setminus, /, \sigma)$ is a residuated lattice-ordered semigroup, where $x \cdot_\sigma y = \sigma(x \cdot y)$, where $\cdot \in \{\land, \setminus, /\}$. We are interested in the cases where this algebra also has an identity element e and hence $(\sigma[A], e)$ is a residuated lattice.

A topological weak conucleus further satisfies $\sigma(x) \land \sigma(y) \leq \sigma(x \land y)$. So, a topological weak conucleus on a GBI-algebra A is a weak conucleus on both the residuated lattice and the Brouwerian algebra reducts of A.
A weak conucleus on a residuated lattice \mathbf{A} is an interior operator σ on \mathbf{A} such that $\sigma(x) \sigma(y) \leq \sigma(xy)$, for all $x, y \in \mathbf{A}$. Then $\sigma[\mathbf{A}] = (\sigma[\mathbf{A}], \land, \lor, \cdot, \backslash_{\sigma}, /_{\sigma})$ is a residuated lattice-ordered semigroup, where $x \bullet_{\sigma} y = \sigma(x \bullet y)$, where $\bullet \in \{\land, \backslash, /\}$. We are interested in the cases where this algebra also has an identity element e and hence $(\sigma[\mathbf{A}], e)$ is a residuated lattice.

A topological weak conucleus further satisfies $\sigma(x) \land \sigma(y) \leq \sigma(x \land y)$. So, a topological weak conucleus on a GBI-algebra \mathbf{A} is a weak conucleus on both the residuated lattice and the Brouwerian algebra reducts of \mathbf{A}.

Given a residuated lattice \mathbf{A} and a positive idempotent element p, the map σ_p, where $\sigma_p(x) = p \backslash x / p$, is a topological weak conucleus called the double division conucleus by p.
A weak conucleus on a residuated lattice \mathbf{A} is an interior operator σ on \mathbf{A} such that $\sigma(x)\sigma(y) \leq \sigma(xy)$, for all $x, y \in \mathbf{A}$. Then $\sigma[\mathbf{A}] = (\sigma[\mathbf{A}], \land, \lor, \cdot, \backslash, \neg)$ is a residuated lattice-ordered semigroup, where $x \cdot_\sigma y = \sigma(x \cdot y)$, where $\cdot \in \{\land, \backslash, \lor\}$. We are interested in the cases where this algebra also has an identity element e and hence $(\sigma[\mathbf{A}], e)$ is a residuated lattice.

A topological weak conucleus further satisfies $\sigma(x) \land \sigma(y) \leq \sigma(x \land y)$. So, a topological weak conucleus on a GBI-algebra \mathbf{A} is a weak conucleus on both the residuated lattice and the Brouwerian algebra reducts of \mathbf{A}.

Given a residuated lattice \mathbf{A} and a positive idempotent element p, the map σ_p, where $\sigma_p(x) = p \backslash x / p$, is a topological weak conucleus called the double division conucleus by p. Also, p is the identity element $\sigma_p(\mathbf{A})$; we denote the resulting residuated lattice/GBI-algebra $(\sigma_p(\mathbf{A}), p)$ by $p \backslash \mathbf{A} / p$.

Nick Galatos, TACL, Prague, June 2017
A weak conucleus on a residuated lattice A is an interior operator σ on A such that $\sigma(x)\sigma(y) \leq \sigma(xy)$, for all $x, y \in A$. Then $\sigma[A] = (\sigma[A], \wedge, \vee, \cdot, \setminus, /)$ is a residuated lattice-ordered semigroup, where $x \cdot_\sigma y = \sigma(x \cdot y)$, where $\cdot \in \{\wedge, \setminus, /\}$. We are interested in the cases where this algebra also has an identity element e and hence $(\sigma[A], e)$ is a residuated lattice.

A topological weak conucleus further satisfies $\sigma(x) \wedge \sigma(y) \leq \sigma(x \wedge y)$. So, a topological weak conucleus on a GBI-algebra A is a weak conucleus on both the residuated lattice and the Brouwerian algebra reducts of A.

Given a residuated lattice A and a positive idempotent element p, the map σ_p, where $\sigma_p(x) = p \setminus x / p$, is a topological weak conucleus called the double division conucleus by p. Also, p is the identity element $\sigma_p(A)$; we denote the resulting residuated lattice/GBI-algebra $(\sigma_p(A), p)$ by $p \setminus A / p$.

Given a poset $P = (P, \leq)$, we set $A = Rel(P)$, to be the involutive GBI algebra of all binary relations on the set P. Note that $p = \leq$ is a positive idempotent element of A. It is easy to see that $p \setminus A / p$ is exactly $Wk(P)$, so the latter is a GBI-algebra.
If A is involutive then so is $p \setminus A / p$ and the latter is a subalgebra of A with respect to the operations $\land, \lor, \cdot, +, \sim, \neg$.
If A is involutive then so is $p \setminus A / p$ and the latter is a subalgebra of A with respect to the operations $\wedge, \vee, \cdot, +, \sim, -$. Recall that an involutive residuated lattice is an expansion of a residuated lattice with an extra constant 0 such that $\sim(-x) = x = -(\sim x)$, where $\sim x = x \setminus 0$ and $-x = 0 / x$; we also define $x + y = \sim(-y \cdot -x)$.
If A is involutive then so is $p \setminus A / p$ and the latter is a subalgebra of A with respect to the operations $\wedge, \vee, \cdot, +, \sim, -$. Recall that an involutive residuated lattice is an expansion of a residuated lattice with an extra constant 0 such that $\sim(-x) = x = - (\sim x)$, where $\sim x = x \setminus 0$ and $-x = 0 / x$; we also define $x + y = \sim(-y \cdot -x)$.

We note that we also have that $Wk(P) \cong Res(O(P))$.
If A is involutive then so is $p\backslash A/p$ and the latter is a subalgebra of A with respect to the operations $\land, \lor, \cdot, +, \sim, \neg$. Recall that an involutive residuated lattice is an expansion of a residuated lattice with an extra constant 0 such that $\sim(-x) = x = -(\sim x)$, where $\sim x = x\backslash 0$ and $-x = 0/x$; we also define $x + y = \sim(-y \cdot -x)$.

We note that we also have that $Wk(P) \cong Res(O(P))$. Recall that for a complete join semilattice L, $Res(L)$ denotes the residuated lattice of all residuated maps on L; here a map on f on a poset P is called residuated if there exists a map f^* on P such that $f(x) \leq y$ iff $x \leq f^*(y)$, for all $x, y \in P$.
The study of congruences of the algebraic models is important in determining subdirectly irreducibles, subvarieties, deduction theorems. We prove that congruences on an algebra correspond to specific subsets. As in the case of group theory (normal subgroups) this proves to be a substantial simplification.
The study of congruences of the algebraic models is important in determining subdirectly irreducibles, subvarieties, deduction theorems. We prove that congruences on an algebra correspond to specific subsets. As in the case of group theory (normal subgroups) this proves to be a substantial simplification.

In residuated lattices congruences correspond to normal submonoid filters.
The study of congruences of the algebraic models is important in determining subdirectly irreducibles, subvarieties, deduction theorems. We prove that congruences on an algebra correspond to specific subsets. As in the case of group theory (normal subgroups) this proves to be a substantial simplification.

In residuated lattices congruences correspond to *normal submonoid filters*. Given $a, x \in A$ we define $\rho'_a x = ax/a$ and $\lambda'_a(x) = a \setminus xa$ (which are akin to conjugates in group theory). A subset is called *normal* if it is closed under ρ'_a and λ'_a for all $a \in A$.
The study of congruences of the algebraic models is important in determining subdirectly irreducibles, subvarieties, deduction theorems. We prove that congruences on an algebra correspond to specific subsets. As in the case of group theory (normal subgroups) this proves to be a substantial simplification.

In residuated lattices congruences correspond to *normal submonoid filters*. Given $a, x \in A$ we define $\rho'_a x = ax/a$ and $\lambda'_a(x) = a \backslash xa$ (which are akin to conjugates in group theory). A subset is called *normal* if it is closed under ρ'_a and λ'_a for all $a \in A$.

It is known that if θ is a congruence on A then $\uparrow[1]_\theta$, the upset of the equivalence class of 1, is a normal multiplicative filter.
The study of congruences of the algebraic models is important in determining subdirectly irreducibles, subvarieties, deduction theorems. We prove that congruences on an algebra correspond to specific subsets. As in the case of group theory (normal subgroups) this proves to be a substantial simplification.

In residuated lattices congruences correspond to normal submonoid filters. Given $a, x \in A$ we define $\rho'_a x = ax/a$ and $\lambda'_a(x) = a \setminus xa$ (which are akin to conjugates in group theory). A subset is called normal if it is closed under ρ'_a and λ'_a for all $a \in A$.

It is known that if θ is a congruence on A then $\uparrow \{1\}_\theta$, the upset of the equivalence class of 1, is a normal multiplicative filter. Conversely, if F is a normal multiplicative filter of a residuated lattice A, then the relation θ_F is a congruence on A, where $a \theta_F b$ iff $a \setminus b \land b \setminus a \in F$.
Alternative subsets to F include convex normal (for $\rho_a x = (ax/a) \land 1$ and $\lambda_a (x) = (a \backslash xa) \land 1$) subalgebras, such as $\{x : f \leq x \leq 1/f, f \in F\}$ and also convex normal (for ρ, λ) negative submonoids, such as the negative cone of F: $\{x \in F : x \leq 1\}$.
Alternative subsets to F include convex normal (for
$\rho_a x = (ax/a) \land 1$ and $\lambda_a(x) = (a \setminus xa) \land 1$) subalgebras, such as
$\{x : f \leq x \leq 1/f, f \in F\}$ and also convex normal (for ρ, λ) negative
submonoids, such as the negative cone of F: $\{x \in F : x \leq 1\}$.

Note that if A is a Brouwerian or a Heyting algebra, then all notions
coincide: normal multiplicative filters, convex normal subalgebras,
and convex normal negative submonoids, are usual lattice filters.
Alternative subsets to F include convex normal (for $\rho_a x = (ax/a) \land 1$ and $\lambda_a(x) = (a \setminus xa) \land 1$) subalgebras, such as $\{x : f \leq x \leq 1/f, f \in F\}$ and also convex normal (for ρ, λ) negative submonoids, such as the negative cone of F: $\{x \in F : x \leq 1\}$.

Note that if A is a Brouwerian or a Heyting algebra, then all notions coincide: normal multiplicative filters, convex normal subalgebras, and convex normal negative submonoids, are usual lattice filters.

GBI-congruences are RL-congruences with further closure conditions. As a result the equivalence class of 1 is a normal multiplicative filter with further closure conditions. We identify these as closure under $r_{a,b}(x) = (a \rightarrow b)/(xa \rightarrow b)$ and $s_{a,b}(x) = (a \rightarrow bx)/(a \rightarrow b)$, for all a, b.
Alternatively, congruences are characterized by their equivalence classes of \top. These are usual lattice filters that are closed under

\begin{align*}
 u_{a,b}(x) &= a/(b \land x) \rightarrow a/b, \\
 u'_{a,b}(x) &= (b \land x)\!\backslash\!a \rightarrow b\!\backslash\!a, \\
 v_{a,b}(x) &= ab \rightarrow (a \land x)b, \\
 v'_{a,b}(x) &= ab \rightarrow a(b \land x), \text{ and} \\
 w(x) &= \top\!\backslash\!x/\top, \text{ for all } a, b.
\end{align*}
Alternatively, congruences are characterized by their equivalence classes of \top. These are usual lattice filters that are closed under

\[
\begin{align*}
 u_{a,b}(x) &= a/(b \land x) \rightarrow a/b, \\
 u'_{a,b}(x) &= (b \land x)\backslash a \rightarrow b \backslash a, \\
 v_{a,b}(x) &= ab \rightarrow (a \land x)b, \\
 v'_{a,b}(x) &= ab \rightarrow a(b \land x), \text{ and} \\
 w(x) &= \top \backslash x / \top, \text{ for all } a, b.
\end{align*}
\]

As a result we obtain a parameterized local deduction theorem for the GBI.
Starting from GBI-algebras we can present a display calculus for it, in a natural way. However, a standard *Genzen-style* formalism also enjoys enough display properties and is simpler.
Starting from GBI-algebras we can present a display calculus for it, in a natural way. However, a standard *Genzen-style* formalism also enjoys enough display properties and is simpler. The following calculus is well known, starting from the relevance logic community.
Starting from GBI-algebras we can present a display calculus for it, in a natural way. However, a standard *Genzen-style* formalism also enjoys enough display properties and is simpler. The following calculus is well known, starting from the relevance logic community.

We consider the set of GBI-formulas Fm and define the free algebra W over Fm with two operations \circ (also denoted by comma) and \otimes (also denoted by semicolon). A sequent (also called a bunch) is an expression of the form $x \Rightarrow a$, where $x \in W$ and $a \in Fm$. For example,

$$(q \otimes (p \rightarrow r)) \circ (p \cdot q) \Rightarrow (p \rightarrow q) \backslash (q \land r)$$
Starting from GBI-algebras we can present a display calculus for it, in a natural way. However, a standard *Genzen-style* formalism also enjoys enough display properties and is simpler. The following calculus is well known, starting from the relevance logic community.

We consider the set of GBI-formulas \(F_m \) and define the free algebra \(W \) over \(F_m \) with two operations \(\circ \) (also denoted by comma) and \(\ominus \) (also denoted by semicolon). A sequent (also called a bunch) is an expression of the form \(x \Rightarrow a \), where \(x \in W \) and \(a \in F_m \). For example,

\[(q \ominus(p \rightarrow r)) \circ (p \cdot q) \Rightarrow (p \rightarrow q) \backslash (q \land r)\]

We will consider extensions by any equations over the signature \(\{\lor, \land, \cdot, 1\} \) of this calculus and study cut elimination, decidability, finite model property, finite embeddability property.
The Gentzen calculus

\[
\frac{x \Rightarrow a \quad u(a) \Rightarrow c}{u(x) \Rightarrow c} \quad \text{(CUT)} \quad \frac{u(x) \Rightarrow c}{u(x) \Rightarrow c} \quad \frac{u(x \bigvee (y \bigwedge z)) \Rightarrow c}{u((x \bigvee y) \bigwedge z) \Rightarrow c} \quad \frac{u(x \bigwedge y) \Rightarrow c}{u(x \bigwedge x) \Rightarrow c} \quad \text{(\bigwedge i)} \quad \frac{u(x \bigwedge x) \Rightarrow c}{u(x) \Rightarrow c} \quad \text{(\bigwedge c)}
\]

\[
\frac{u(a) \Rightarrow c \quad u(b) \Rightarrow c}{u(a \bigvee b) \Rightarrow c} \quad \text{(\bigvee L)} \quad \frac{x \Rightarrow a}{x \Rightarrow a \bigvee b} \quad \text{(\bigvee R)} \quad \frac{x \Rightarrow b}{x \Rightarrow a \bigvee b} \quad \text{(\bigvee Rr)} \quad \frac{u(a \bigwedge b) \Rightarrow c}{u(a \bigwedge a) \Rightarrow c} \quad \text{(\bigwedge L)} \quad \frac{u(a \bigwedge b) \Rightarrow c}{u(a \bigwedge b) \Rightarrow c} \quad \text{(\bigwedge R)}
\]

\[
\frac{u(a \circ b) \Rightarrow c}{u(a \cdot b) \Rightarrow c} \quad \text{(.L)} \quad \frac{x \Rightarrow a \quad y \Rightarrow b}{x \Rightarrow a \quad y \Rightarrow b} \quad \text{(.R)} \quad \frac{u(\varepsilon) \Rightarrow a}{u(1) \Rightarrow a} \quad \text{(1L)} \quad \frac{\varepsilon \Rightarrow 1}{1R}
\]

\[
\frac{x \Rightarrow a \quad u(b) \Rightarrow c}{u(x \bigcirc (a \backslash b)) \Rightarrow c} \quad \text{(/L)} \quad \frac{a \bigcirc x \Rightarrow b}{x \Rightarrow a \backslash b} \quad \text{(/R)} \quad \frac{x \Rightarrow a \quad u(b) \Rightarrow c}{u((b/a) \bigcirc x) \Rightarrow c} \quad \text{(\backslash L)} \quad \frac{x \bigcirc a \Rightarrow b}{x \Rightarrow b/a} \quad \text{(\backslash R)}
\]

\[
\frac{x \Rightarrow a \quad u(b) \Rightarrow c}{u(x \bigotimes (a \rightarrow b)) \Rightarrow c} \quad \text{(-L)} \quad \frac{x \bigotimes a \Rightarrow b}{x \Rightarrow a \rightarrow b} \quad \text{(-R)} \quad \frac{u(\delta) \Rightarrow c}{u(\top) \Rightarrow c} \quad \text{(\top L)} \quad \frac{x \Rightarrow \top}{x \Rightarrow \top} \quad \text{(\top R)}
\]
We define the relation N between W and Fm by writing $x N a$ if the sequent $x \Rightarrow a$ is cut-free provable.
We define the relation \(N \) between \(W \) and \(Fm \) by writing \(x N a \) if the sequent \(x \Rightarrow a \) is cut-free provable. This then supports the structure of a GBI-frame \(W = (W, \circ, \bigwedge, N, Fm) \) and it yields a GBI-algebra \(W^+ \); it can be shown that this algebra that refutes any non-provable sequent.
We define the relation N between W and Fm by writing $x \ N \ a$ if the sequent $x \Rightarrow a$ is cut-free provable. This then supports the structure of a GBI-frame $W = (W, \circ, \land, N, Fm)$ and it yields a GBI-algebra W^+; it can be shown that this algebra that refutes any non-provable sequent.

The theory of residuated frames was developed in some earlier work and it is extended to the GBI setting here.
We define the relation N between W and Fm by writing $x N a$ if the sequent $x \Rightarrow a$ is cut-free provable. This then supports the structure of a GBI-frame $W = (W, \circ, \sqcap, N, Fm)$ and it yields a GBI-algebra W^+; it can be shown that this algebra that refutes any non-provable sequent.

The theory of residuated frames was developed in some earlier work and it is extended to the GBI setting here. These relational semantics is to use a two-sorted structure to represent non-distributive lattices and obtain the lattice via a Dedekind-McNeille-Birkhoff construction.
We define the relation N between W and Fm by writing $x N a$ if the sequent $x \Rightarrow a$ is cut-free provable. This then supports the structure of a GBI-frame $W = (W, \circ, \bigwedge, N, Fm)$ and it yields a GBI-algebra W^+; it can be shown that this algebra that refutes any non-provable sequent.

The theory of residuated frames was developed in some earlier work and it is extended to the GBI setting here. These relational semantics is to use a two-sorted structure to represent non-distributive lattices and obtain the lattice via a Dedekind-McNeille-Birkhoff construction. The residuated structure is added by the \circ (and \bigwedge) operations on W.
We define the relation N between W and Fm by writing $x \mathrel{N} a$ if the sequent $x \Rightarrow a$ is cut-free provable. This then supports the structure of a GBI-frame $W = (W, \circ, \sqcap, N, Fm)$ and it yields a GBI-algebra W^+; it can be shown that this algebra that refutes any non-provable sequent.

The theory of residuated frames was developed in some earlier work and it is extended to the GBI setting here. These relational semantics is to use a two-sorted structure to represent non-distributive lattices and obtain the lattice via a Dedekind-McNeille-Birkhoff construction. The residuated structure is added by the \circ (and \sqcap) operations on W.

We consider further structural rules of the following form, where $t_0, t_1, \ldots, t_n \in W$ (and no variables are repeated in t_0).

$$
\begin{array}{c}
\frac{u(t_1) \Rightarrow a \quad \cdots \quad u(t_n) \Rightarrow a}{u(t_0) \Rightarrow a}
\end{array} \quad [r]
$$
We define the relation N between W and Fm by writing $x \ N \ a$ if the sequent $x \Rightarrow a$ is cut-free provable. This then supports the structure of a GBI-frame $\mathbf{W} = (W, \circ, \sqcap, N, Fm)$ and it yields a GBI-algebra \mathbf{W}^+; it can be shown that this algebra that refutes any non-provable sequent.

The theory of residuated frames was developed in some earlier work and it is extended to the GBI setting here. These relational semantics is to use a two-sorted structure to represent non-distributive lattices and obtain the lattice via a Dedekind-McNeille-Birkhoff construction. The residuated structure is added by the \circ (and \sqcap) operations on W.

We consider further structural rules of the following form, where $t_0, t_1, \ldots, t_n \in W$ (and no variables are repeated in t_0).

$$
\frac{u(t_1) \Rightarrow a \quad \cdots \quad u(t_n) \Rightarrow a}{u(t_0) \Rightarrow a} \quad [r]
$$

We can prove that if we add $[r]$ to the calculus then the algebra \mathbf{W}^+ satisfies the identity $t_0 \leq t_1 \lor \cdots \lor t_n$.
We define the relation N between W and Fm by writing $x \vdash N a$ if the sequent $x \Rightarrow a$ is cut-free provable. This then supports the structure of a GBI-frame $W = (W, \circ, \sqcap, N, Fm)$ and it yields a GBI-algebra W^+; it can be shown that this algebra that refutes any non-provable sequent.

The theory of residuated frames was developed in some earlier work and it is extended to the GBI setting here. These relational semantics is to use a two-sorted structure to represent non-distributive lattices and obtain the lattice via a Dedekind-McNeille-Birkhoff construction. The residuated structure is added by the \circ (and \sqcap) operations on W.

We consider further structural rules of the following form, where $t_0, t_1, \ldots, t_n \in W$ (and no variables are repeated in t_0).

$$
\frac{u(t_1) \Rightarrow a \quad \cdots \quad u(t_n) \Rightarrow a}{u(t_0) \Rightarrow a} \quad [r]
$$

We can prove that if we add $[r]$ to the calculus then the algebra W^+ satisfies the identity $t_0 \leq t_1 \lor \cdots \lor t_n$. This yealds cut elimination for all such extensions in the signature $\{\lor, \land, \cdot, 1\}$.
Decidability

Given a sequent $x \Rightarrow a$ we define its *sequent tree* (growing downward) in the obvious way:
Decidability

Given a sequent $x \Rightarrow a$ we define its sequent tree (growing downward) in the obvious way: \Rightarrow sits the root with two children nodes; on the right-node sits the formula tree of a; on the left-node sits the structure tree of x. For example we can take the sequent

$$(q \sqcap (p \rightarrow r)) \circ (p \cdot q) \Rightarrow (p \rightarrow q) \setminus (q \land r)$$
We now add *directions* to the edges of this tree.
We now add **directions** to the edges of this tree.

The two edges below a ☐ or a \(\& \) point downward (and the same holds for the connectives \(\& \), \(\lor \) and \(\cdot \) in *negative position*). Here \(\bullet \) is any of ☐, \(\& \), \(\cdot \), \(\& \), \(\lor \).
The *multiplicative length* of a sequent is defined along an oriented path by counting the maximum numbers of \circ, \cdot in negative position and of \setminus, $/$ in positive position. Note that the multiplicative length does not increase upwards by the rules. Care is needed for $(\rightarrow L)$:
The multiplicative length of a sequent is defined along an oriented path by counting the maximum numbers of \(\circ, \cdot \) in negative position and of \(\setminus, / \) in positive position. Note that the multiplicative length does not increase upwards by the rules. Care is needed for \((\to L)\):
The *multiplicative length* of a sequent is defined along an oriented path by counting the maximum numbers of \circ, \cdot in negative position and of \setminus, $/$ in positive position. Note that the multiplicative length does not increase upwards by the rules. Care is needed for (\rightarrowL):

\[
\Rightarrow \\
\begin{array}{c}
 x \\
 a \\
 b \\
 c
\end{array} \\
\Rightarrow \\
\begin{array}{c}
 \land \\
 x \\
 a \\
 b \\
 \Rightarrow \\
 c
\end{array}
\]

This puts a bound on the \circ-tree height of all sequents in the proof of a sequent.
The *multiplicative length* of a sequent is defined along an oriented path by counting the maximum numbers of \circ, \cdot in negative position and of \$, / in positive position. Note that the multiplicative length does not increase upwards by the rules. Care is needed for $(\rightarrow L)$:

![Diagram of sequents](image)

This puts a bound on the \circ-tree height of all sequents in the proof of a sequent. Also, since we can restrict to proofs of 3-reduced sequents, this supports an inductive argument of finiteness.
To show the Finite Model Property we start with a sequent s that is not provable and construct a finite countermodel. We modify W, since W^+ was infinite.
To show the Finite Model Property we start with a sequent s that is not provable and construct a finite countermodel. We modify W, since W^+ was infinite. We define $x N_s a$ iff $x N a$ or $x \Rightarrow a$ is not in the proof search of s.
To show the Finite Model Property we start with a sequent s that is not provable and construct a finite countermodel. We modify W, since W^+ was infinite. We define $x N_s a$ iff $x N a$ or $x \Rightarrow a$ is not in the proof search of s.

Even though the proof search of s is infinite, we argue that W^+ is finite and refutes s.
For certain subvarieties we can prove even the strong finite model property,
For certain subvarieties we can prove even the strong finite model property, which follows from the Finite Embeddability Property for a variety \mathcal{V}: Any finite subset B of an algebra $A \in \mathcal{V}$ can be embedded in a finite algebra $D \in \mathcal{V}$.
For certain subvarieties we can prove even the strong finite model property, which follows from the Finite Embeddability Property for a variety \mathcal{V}: Any finite subset B of an algebra $A \in \mathcal{V}$ can be embedded in a finite algebra $D \in \mathcal{V}$.

We modify the frame by taking W to be the subset of A generated by B using multiplication and meet. Also, for $x \in W$ and $b \in B$, we define $x \ll b$ iff $x \leq b$.
For certain subvarieties we can prove even the strong finite model property, which follows from the Finite Embeddability Property for a variety \mathcal{V}: Any finite subset B of an algebra $A \in \mathcal{V}$ can be embedded in a finite algebra $D \in \mathcal{V}$.

We modify the frame by taking W to be the subset of A generated by B using multiplication and meet. Also, for $x \in W$ and $b \in B$, we define $x N b$ iff $x \leq b$.

Then using well quasiorders and better quasiorders we can show that W^+ is finite for many subvarieties. [Joint work with Riquelmi Cardona]