A proof-theoretic approach to abstract interpretation

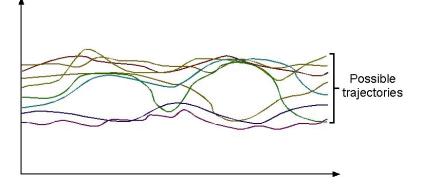
Apostolos Tzimoulis

joint work with Vijay D'Silva, Alessandra Palmigiano and Caterina Urban

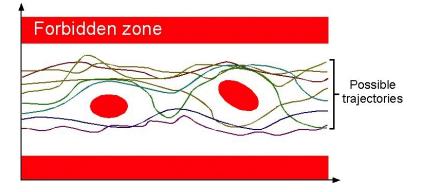
(with images from Patrick Cousot)

TACL 2017 - Prague

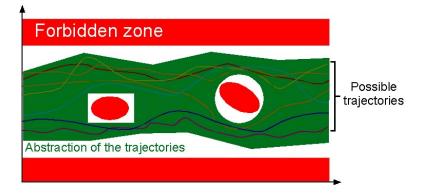
Abstract interpretation



Abstract interpretation

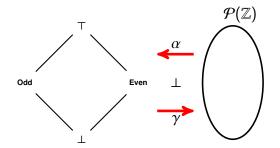


Abstract interpretation



Some examples

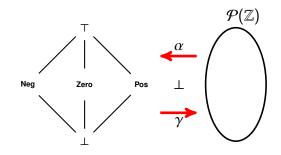
A program produces an integer as output. The concrete domain of the outcomes will be $\mathcal{P}(\mathbb{Z})$. The abstraction of the program output is



and let $\gamma : (\mathcal{A}, \sqsubseteq, \sqcup, \sqcap, \sim) \to (\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \neg)$ be such that $\gamma(\top) = \mathbb{Z} \qquad \gamma(\mathsf{Even}) = \{2a \in \mathbb{Z} \mid a \in \mathbb{Z}\}$ $\gamma(\bot) = \emptyset \quad \gamma(\mathsf{Odd}) = \{2a + 1 \in \mathbb{Z} \mid a \in \mathbb{Z}\}$

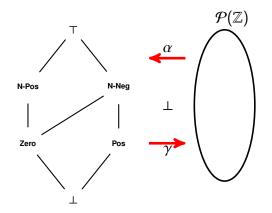
Some examples

A program produces an integer as output. The concrete domain of the outcomes will be $\mathcal{P}(\mathbb{Z})$. The abstraction of the program output is



Some examples

A program produces an integer as output. The concrete domain of the outcomes will be $\mathcal{P}(\mathbb{Z})$. The abstraction of the program output is



- Make the role of logic explicit (c.f Schmidt 2008, d'Silva Urban 2016).
- Apply the logical insights to develop a unifying framework for these phenomena.
- Explore how far can we go.

THE FORMALITIES

- Let *Var* be a set of variables. A structure is a function $\sigma: Var \rightarrow S$ (where *S* is a set, e.g. \mathbb{Z}).
- ▶ The structure ($\mathcal{P}(Struc), \subseteq$) is called *concrete algebra*.
- Let $\mathcal{A} = (A, \sqsubseteq)$ be a bounded lattice.
- Concretization: A monotone function γ : A → (P(Struc), ⊆) that preserves maximum and minimum.
- If a concretization exists then we say that A is an abstraction of (P(Struc), ⊆).
- A transformer g : A → A is a sound abstraction of f : P(Struct) → P(Struct) if for all a ∈ A f(γ(a)) ⊆ γ(g(a)).

LOGIC AND LATTICES

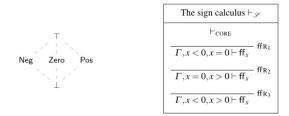


Fig. 3 The lattice of signs and the proof calculus $\vdash_{\mathscr{S}}$ for the sign logic.

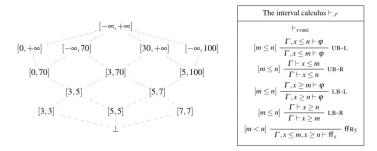


Fig. 6 The lattice of intervals and the proof calculus $\vdash_{\mathscr{I}}$ for the interval logic.

A GENERAL RECIPE

Assume that |Var| = 1. We will generate a logic corresponding to a finite abstraction $\mathcal{A} = (A, \sqsubseteq, Op_A)$ with concretization $\gamma : \mathcal{A} \to (P(\text{Struct}), \subseteq, Op_c)$.

- 1. The logical connectives of the language will be the connectives preserved by γ .
- for every point a ∈ A we add a unary predicate symbol a(x) to the language;
- for every connective that is preserved by γ we add the introduction rules appropriate to that connective in the proof system;
- for every binary connective ★ in L_A such that a ★ b = c, we add a rule corresponding to the axiom a(x) ★ b(x) ⊣⊢ c(x) in the proof system;
- 5. for every unary connective \star such that $\star a = b$, we add a rule corresponding to the axiom $\star a(x) \dashv b(x)$.
- for all predicates a(x) and b(x) such that a ≤ b, we add a rule corresponding to the axiom a(x) ⊢ b(x).

Some Results

Let $\mathbb L$ be the Lindenbaum-Tarski algebra of $\mathcal L_A.$

Lemma

The logic \mathcal{L}_A is sound w.r.t. the concretization.

Lemma

The algebra $\mathbb L$ is isomorphic to $\mathcal R.$

Lemma

If γ is an order-embedding, then \mathcal{L}_A is complete w.r.t. the concretization.

Some Questions

- Cartesian abstractions with many-variable.
- Categories: Can we use the duality to help us?
- Modalities: Abstract transformers.