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SOME EXAMPLES

A program produces an integer as output. The concrete domain of
the outcomes will be P(Z). The abstraction of the program output
is
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AIM OF THE PROJECT

» Make the role of logic explicit (c.f Schmidt 2008, d’'Silva Urban
2016).

» Apply the logical insights to develop a unifying framework for
these phenomena.

» Explore how far can we go.



THE FORMALITIES

» Let Var be a set of variables. A structure is a function
o : Var —» S (where S is a set, e.g. Z).

» The structure (P(Struc), C) is called concrete algebra.
» Let A = (A,C) be a bounded lattice.

» Concretization: A monotone function y : A — (P(Struc), )
that preserves maximum and minimum.

» If a concretization exists then we say that A is an abstraction
of (P(Struc), C).

» Atransformer g : A — A is a sound abstraction of
f : P(Struct) — P(Struct) if for all a € A f(y(a)) € y(g(a)).



LocGic AND LATTICES

The sign calculus =
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Fig. 3 The lattice of signs and the proot calculus I » for the sign logic.
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A GENERAL RECIPE
Assume that |Var| = 1. We will generate a logic corresponding to a
finite abstraction A = (A, T, Opa) with concretization
v : A — (P(Struct), S, Ope).

1.

The logical connectives of the language will be the
connectives preserved by .

for every point a € A we add a unary predicate symbol a(x) to
the language;

for every connective that is preserved by y we add the
introduction rules appropriate to that connective in the proof
system;

. for every binary connective x in £4 such thata x b = ¢, we

add a rule corresponding to the axiom a(x) x b(x) 4 ¢(x) in
the proof system;

. for every unary connective x such that xa = b, we add a rule

corresponding to the axiom xa(x) 4+ b(x).

. for all predicates a(x) and b(x) such that a < b, we add a rule

corresponding to the axiom a(x) r b(x).



SoME REsurLTs

Let L be the Lindenbaum-Tarski algebra of L.

LeEmMA
The logic L4 is sound w.r.t. the concretization.

LEMMA
The algebra LL is isomorphic to A.

LeEmMMA
If v is an order-embedding, then L4 is complete w.r.t. the
concretization.



SoME QUESTIONS

» Cartesian abstractions with many-variable.
» Categories: Can we use the duality to help us?
» Modalities: Abstract transformers.



