The Variety of Nuclear Implicative Semilattices is Locally Finite

Guram Bezhanishvili¹, Nick Bezhanishvili², David Gabelaia³, Silvio Ghilardi⁴, and Mamuka Jibladze³

New Mexico State University, Las Cruces, New Mexico, U.S.A. gbezhani@nmsu.edu
² Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands N.Bezhanishvili@uva.nl
³ Razmadze Mathematical Institute, Tbilisi State University, Tbilisi, Georgia gabelaia@gmail.com, jib@rmi.ge
⁴ Università degli Studi di Milano, Milan, Italy silvio.ghilardi@unimi.it

We study the variety of nuclear algebras — algebras of the form $(A, \wedge, 1, \rightarrow, \mathbf{j})$ where $(A, \wedge, 1, \rightarrow)$ is a meet-implicative semilattice and $\mathbf{j} : A \rightarrow A$ is a nucleus.

The latter means that \mathbf{j} is an idempotent inflationary multiplicative unary operator, that is, the identities

$$x \leqslant \mathbf{j}x$$
$$\mathbf{j}\mathbf{j}x = \mathbf{j}x$$
$$\mathbf{j}(x \wedge y) = \mathbf{j}x \wedge \mathbf{j}y$$

hold in A.

It has been proved by Diego in [1] that the variety of meet-implicative semilattices is locally finite. Our main result is that the same remains true after extending the signature with a nucleus as above.

Archetypal example of an implicative semilattice: let (X, \leq) be a poset (partially ordered set), and let $A = \mathbf{D}(X, \leq)$ be the set of downsets of (X, \leq) (subsets $D \subseteq X$ satisfying $x \in D$, $y \leq x \Rightarrow y \in D$ for all $x, y \in X$). Let us equip A with the semilattice structure via $D_1 \wedge D_2 := D_1 \cup D_2$; it has unit $1 := \emptyset$ and the implication given by $D_1 \to D_2 := \downarrow (D_2 - D_1)$, where for a subset $S \subseteq X$, we denote by $\downarrow(S)$ the smallest downset containing S, i. e. $\downarrow(S) = \{x \in X : \exists s \in S \ x \leq s\}$.

NB. The partial order \leq on A resulting from this structure is the *opposite* of the subset inclusion, i. e. $D \leq D'$ iff $D \supseteq D'$.

In fact it follows from the work of Köhler [3] that every *finite* implicative semilattice is isomorphic to one of the above form. Moreover, Köhler obtained a dual description of homomorphisms between finite implicative semilattices in terms of certain partial maps between posets.

We extend this finite duality of Köhler to nuclear algebras. Every subset $S \subseteq X$ of a poset (X, \leq) gives rise to a nucleus $\mathbf{j}_S : \mathbf{D}(X, \leq) \to \mathbf{D}(X, \leq)$ defined by $\mathbf{j}_S(D) = \downarrow (S \cap D)$. Moreover for finite X, every nucleus \mathbf{j} on $\mathbf{D}(X, \leq)$ is equal to some such \mathbf{j}_S , for a unique subset $S \subseteq X$. We also obtain description of homomorphisms of nuclear algebras in terms of partial maps between the corresponding posets, as in [3].

This in turn makes it possible to give a dual description of nuclear subalgebras, and a dual characterization of situations when a nuclear algebra A is generated by its elements $a_1, ..., a_n \in A$. In particular, we have

Theorem 1. Given downsets $D_1, ..., D_n$ of a finite poset (X, \leq) and a subset $S \subseteq X$, if the nuclear algebra $(\mathbf{D}(X, \leq), \mathbf{j}_S)$ is generated by its elements $D_1, ..., D_n$ then for any $x \in X$, either $x \in \max(D_k)$ for some $k \in \{1, ..., n\}$ or $x \in \max(S \cap \downarrow y)$ for some $y \neq x$.

This then enables us to apply the general construction of the universal model from [2] to our case.

Given a natural number n, we construct a poset L(n), a subset $S(n) \subseteq L(n)$ and downsets $D(n,1),...,D(n,n) \in \mathbf{D}(L(n))$ with the following universal property: for any finite poset X and any subset $S \subseteq X$, if the nuclear algebra $(\mathbf{D}(X),\mathbf{j}_S)$ is generated by the downsets $D_1,...,D_n \in \mathbf{D}(X)$, then there is a unique isomorphism $\varphi: X \to X'$ to a downset $X' \subseteq L(n)$ with $\varphi(S) = X' \cap S(n)$ and $\varphi(D_k) = X' \cap D(n,k)$, k = 1,...,n.

The construction is inductive: we start with $L(n)_0$ empty; having constructed $S(n)_i \subseteq L(n)_i$ and $D(n,1)_i,...,D(n,n)_i \in \mathbf{D}(L(n)_i)$, we define $L(n)_{i+1} \supseteq L(n)_i$, $S(n)_{i+1} \supseteq S(n)_i$, $D(n,k)_{i+1} \supseteq D(n,k)_i$, k=1,...,n, as follows.

 $L(n)_{i+1} \setminus L(n)_i$ consists of elements $r_{\alpha,\sigma} \notin S(n)_{i+1}$, one for each antichain α in $L(n)_i$, with $\alpha \not\subseteq L(n)_{i-1}$ if i > 0, and each $\sigma \subsetneq \{k \in \{1,...,n\} : \alpha \subseteq D(n,k)_i\}$, as well as elements $s_{\alpha,\sigma} \in S(n)_{i+1}$, one for each such pair α , σ that $\sigma \subseteq \{k \in \{1,...,n\} : \alpha \subseteq D(n,k)_i\}$ and either $\sigma \neq \{k \in \{1,...,n\} : \alpha \subseteq D(n,k)_i\}$ or $\alpha \not\subseteq S(n)_i$.

We then define $D(n,k)_{i+1} = D(n,k)_i \cup \{r_{\alpha,\sigma} : k \in \sigma\} \cup \{s_{\alpha,\sigma} : k \in \sigma\}, k = 1,...,n.$

Extension of the partial order to $L(n)_{i+1}$ is uniquely determined by the requirements $\max(\downarrow(r_{\alpha,\sigma})\setminus\{r_{\alpha,\sigma}\})=\alpha$ and $\max(\downarrow(s_{\alpha,\sigma})\setminus\{s_{\alpha,\sigma}\})=\alpha$.

We then have

Theorem 2. The above construction stops after finite number of steps, i. e. there is an i such that $L(n) = L(n)_i$ with $S(n) = S(n)_i$, $D(n,k) = D(n,k)_i$ has the above universal property.

On the other hand we have

Theorem 3. The variety of nuclear algebras has the finite model property.

These facts enable us to conclude

Corollary. For each n, the finite nuclear algebra $(\mathbf{D}(L(n)), \mathbf{j}_{S(n)})$ is the free n-generated nuclear algebra. In particular, the variety of nuclear algebra is locally finite.

References

- [1] A. Diego. Sur les Algèbres de Hilbert. Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI. Gauthier-Villars, Paris, 1966.
- [2] Silvio Ghilardi. Irreducible models and definable embeddings. In *Logic Colloquium '92 (Veszprém, 1992)*, Stud. Logic Lang. Inform., pages 95–113. CSLI Publ., Stanford, CA, 1995.
- [3] P. Köhler. Brouwerian semilattices. Trans. Amer. Math. Soc., 268(1):103–126, 1981.