On interpolation in $NEXT(\mathbf{KTB})$ and $NEXT(\mathbf{KB})$

Zofia Kostrzycka¹

Opole University of Technology, Opole, Poland z.kostrzycka@po.opole.pl

We study two modal logics: the Brouwer logic $\mathbf{KTB} := \mathbf{K} \oplus T \oplus B$ and its interesting sub-logic – the logic $\mathbf{KB} := \mathbf{K} \oplus B$, where:

$$T := \Box p \to p$$
$$B := p \to \Box \Diamond p$$

The logic **KTB** (logic **KB**) is complete with respect to the class of reflexive and symmetric Kripke frames (symmetric Kripke frames).

We shall study n-branching Brouwerian modal logics \mathbf{KTB} . $\mathbf{Alt}(\mathbf{n}) := \mathbf{KTB} \oplus alt_n$ as well as \mathbf{KB} . $\mathbf{Alt}(\mathbf{n}) := \mathbf{KB} \oplus alt_n$ where

$$alt_n := \Box p_1 \lor \Box (p_1 \to p_2) \lor \ldots \lor \Box ((p_1 \land \ldots \land p_n) \to p_{n+1}).$$

For n = 3 the above axiom involves linearity of the appropriate reflexive frames – they are chains of reflexive points. Chains of (possibly) irreflexive points characterize logic **KB**.**Alt**(2).

Definition 1. A logic *L* has the Craig interpolation property (CIP) if for every implication $\alpha \rightarrow \beta$ in *L*, there exists a formula γ (interpolant for $\alpha \rightarrow \beta$ in *L*) such that

 $\alpha \rightarrow \gamma \in L \text{ and } \gamma \rightarrow \beta \in L \text{ and } Var(\gamma) \subseteq Var(\alpha) \cap Var(\beta).$

The symbol $Var(\alpha)$ means the set of all propositional variables of the formula α . The weaker notion of interpolation for deducibility is defined as follows:

Definition 2. A logic *L* has interpolation for deducibility (IPD) if for any α and β the condition $\alpha \vdash_L \beta$ implies that there exists a formula γ such that

$$\alpha \vdash_L \gamma \text{ and } \gamma \vdash_L \beta, \text{ and } Var(\gamma) \subseteq Var(\alpha) \cap Var(\beta).$$

It is a logical folklore that (CIP) together with (MP) and deduction theorem implies (IPD).

It is known that **K**, **T**, **K4** and **S4** have (CIP), see Gabbay [3]. Also the logics from *NEXT*(**S4**) are well characterized as regards interpolation (see [5], also [1], p.462-463). It is also known that **S5** has (CIP). The last fact can be proven by applying a very general method of construction of inseparable tableaux (see i.e. [1], p. 446-449). The same method can be applied in the case of **KTB** and **KB**. Then we get that the logics **KTB** and **KB** have (CIP).

The following facts were proven in [4]:

Theorem 1. The logic **KTB**.**Alt**(**3**) does not have (CIP).

Theorem 2. There are only two tabular logics from $NEXT(\mathbf{KTB}.\mathbf{Alt}(3))$ having (IPD). They are the trivial logic $L(\circ)$ and the logic determined by two element cluster $L(\circ - -\circ)$.

On interpolation in NEXT(KTB) and NEXT(KB)

In [4] the following conjectures are placed:

Conjecture 1. *The logic determined by a reflexive and symmetric Kripke frame having the structure of a Boolean cube has (IDP).*

Conjecture 2. *The logic determined by a reflexive and symmetric Kripke frame having the structure of* 2^n *-element Boolean cube, n* \ge 3*, has (IDP).*

In our talk we disprove these conjectures and prove others negative results on interpolation in $NEXT(\mathbf{KTB.Alt}(\mathbf{n}))$ for $n \ge 3$. We also provide a similar research for the logics from $NEXT(\mathbf{KB.Alt}(\mathbf{n}))$. First result, a similar to Theorem 1 is the following:

Theorem 3. The logic **KB**.**Alt**(2) does not have (CIP).

Second, in contrast to logics from *NEXT*(**KTB**.**Alt**(**3**)) we prove:

Theorem 4. *There are infinitely many tabular logics from NEXT*(**KB**.**Alt**(2)) *having (IPD).*

References

- [1] A. Chagrov, M. Zakharyaschev, Modal Logic, Oxford Logic Guides 35, (1997).
- [2] J. Czelakowski, Logical matrices and the amalgamation property, Studia Logica 41, (4), 329-341, (1981).
- [3] D.M. Gabbay, *Craig's interpolation theorem for modal logics*, in W. Hodges, editor, Proceedings of logic conference, London 1970, Vol. 255 of Lecture Notes in Mathematics, 111-127, Springer-Verlag, Berlin, (1972).
- [4] Z. Kostrzycka, Interpolation in normal extension of the Brouwer logic Bulletin of the Section of Logic, Vol. 45:3/4, 1–15, (2016).
- [5] L. Maksimowa, Amalgamation and Interpolation in Normal Modal Logics, Studia Logica, Vol.50 (3/4), 457– 471, (1991).