\aleph_1 , ω_1 , and the modal μ -calculus

Maria João Gouveia^{1*}and Luigi Santocanale^{2†}

¹ CEMAT-CIÊNCIAS

Faculdade de Ciências, Universidade de Lisboa mjgouveia@fc.ul.pt

² Laboratoire d'Informatique Fondamentale de Marseille luigi.santocanale@lif.univ-mrs.fr

The modal μ -calculus \mathbf{L}_{μ} , see [4], enriches the syntax of (poly)modal logic \mathbf{K} with least and greatest fixed-point constructors μ and ν . In a Kripke model \mathcal{M} , the formula $\mu_x.\phi$ (resp., $\nu_x.\phi$) denotes the least (resp., the greatest) fixed-point of the function $\phi_{\mathcal{M}}$ (of the variable x) obtained by evaluating ϕ in \mathcal{M} under the additional condition that x is interpreted as a given subset of worlds. It is required that every occurrence of x is positive in ϕ , so $\phi_{\mathcal{M}}$ is monotone and the least fixed-point exists by the Tarski-Knaster theorem.

A formula $\phi(x)$ is said to be continuous if, for every model \mathcal{M} , the function $\phi_{\mathcal{M}}$ is continuous, in the usual sense. The continuous fragment $\mathcal{C}_0(X)$ of the modal μ -calculus is the set of formulas generated by the following syntax:

$$\phi := x \mid \psi \mid \top \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \langle a \rangle \phi \mid \mu_z . \chi ,$$

where $x \in X$, $\psi \in \mathbf{L}_{\mu}$ is a μ -calculus formula not containing any variable $x \in X$, and $\chi \in \mathcal{C}_0(X \cup \{z\})$. Fontaine [3] proved that a formula $\phi \in \mathbf{L}_{\mu}$ is continuous in x if and only if it is equivalent to a formula in $\mathcal{C}_0(x)$; she also proved that it is decidable whether a formula of the modal μ -calculus is continuous. We add to the above grammar one more production and study the fragment $\mathcal{C}_1(X)$ of \mathbf{L}_{μ} defined as follows:

$$\phi := x \mid \psi \mid \top \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \langle a \rangle \phi \mid \mu_z . \chi \mid \nu_z . \chi ,$$

with the same constraints as above but w.r.t $C_1(X \cup \{z\})$.

Definition 1. Let κ be a regular cardinal. A set $\mathcal{I} \subseteq P(X)$ is κ -directed if every subset of \mathcal{I} of cardinality smaller than κ has an upper bound in \mathcal{I} . A function $f: P(X) \to P(X)$ is κ -continuous if it preserves unions of κ -directed sets.

Notice that, if $\kappa = \aleph_0$, then κ -continuity is the standard notion of continuity. The following proposition is an immediate consequence of the fact that \aleph_1 -continuous functions are closed under parametrized least and greatest fixed-points, see [5, 6].

Proposition 2. Every formula in $\phi(x) \in C_1(x)$ is \aleph_1 -continuous.

The following theorem is a sort of converse to the previous statement.

Theorem 3. For each formula $\phi(x) \in \mathbf{L}_{\mu}$ we can construct a formula $\psi(x) \in \mathcal{C}_1(x)$ such that $\phi(x)$ is κ -continuous for some regular cardinal κ if and only if $\phi(x)$ is equivalent to $\psi(x)$.

The consequences of this theorem are twofold.

Corollary 4. It is decidable whether a formula $\phi(x)$ is κ -continuous for some regular cardinal κ .

^{*}Partially supported by FCT under grant SFRH/BSAB/128039/2016.

[†]Partially supported by the Project TICAMORE ANR-16-CE91-0002-01.

Corollary 5. If a formula is κ -continuous for some regular cardinal κ , then it is κ -continuous for some $\kappa \in \{\aleph_0, \aleph_1\}$.

That is, there are no other relevant fragments of the modal μ -calculus, apart from C_0 and C_1 , that are determined from some continuity condition.

Let us recall that, for a monotone function $f: P(X) \to P(X)$, we can define the approximants to the least fixed-point of f as follows: $f^{\alpha+1}(\emptyset) = f(f^{\alpha}(\emptyset))$ and $f^{\beta}(\emptyset) = \bigcup_{\alpha < \beta} f^{\alpha}(\emptyset)$ (so $f^{0}(\emptyset) = \emptyset$). If $f^{\alpha+1}(\emptyset) = f^{\alpha}(\emptyset)$, then $f^{\alpha}(\emptyset)$ is the least fixed-point of f.

Definition 6. We say that and ordinal α is the *closure ordinal* of $\phi(x) \in \mathbf{L}_{\mu}$ if, for every model \mathcal{M} , $\phi_{\mathcal{M}}^{\alpha}(\emptyset)$ is the least fixed-point of $\phi_{\mathcal{M}}$, and moreover there exists a model \mathcal{M} for which $\phi^{\beta}(\emptyset)$ is not the least fixed-point of $\phi_{\mathcal{M}}$, for every $\beta < \alpha$.

Of course, not every formula $\phi(x) \in \mathbf{L}_{\mu}$ has a closure ordinal. For example []x has no closure ordinal, while ω_0 is the closure ordinal of [] $\perp \vee \langle \rangle x$. Czarnecki [2] proved that every ordinal $\alpha < \omega_0^2$ is the closure ordinal of a formula $\phi \in \mathbf{L}_{\mu}$. Afshari and Leigh [1] proved that if a formula $\phi(x) \in \mathbf{L}_{\mu}$ does not contain greatest fixed-points and has a closure ordinal α , then $\alpha < \omega_0^2$. Considering that every ordinal below ω_0^2 can be written as a polynomial in the inderterminates 1, ω_0 , our next theorem can be used to recover Czarnecki's result:

Theorem 7. Closure ordinals of formulas of the modal μ -calculus are closed under ordinal sum.

Since a formula $\phi(x)$ in the syntactic fragment $\mathcal{C}_1(x)$ is \aleph_1 -continuous, the maps $\phi_{\mathcal{M}}$ converge to their least fixed-point in at most ω_1 steps, where ω_1 is the least uncountable ordinal (considering cardinals as specific ordinals, we have $\omega_1 = \aleph_1$). In particular, every formula in this fragment has a closure ordinal with ω_1 as an upper bound. We prove that ω_1 is indeed a closure ordinal:

Theorem 8. ω_1 is the closure ordinal of the formula $\phi(x) := \nu_z . (\langle v \rangle_X \wedge \langle h \rangle_Z) \vee [v] \bot$.

Extending Thomason's coding to the full modal μ -calculus, it is also possible to construct a monomodal formula in \mathbf{L}_{μ} whose only free variable is x, with ω_1 as closure ordinal. Consequently, we extend Czarnecki's result by showing that polynomials in the inderterminates $1, \omega_0, \omega_1$ denote closure ordinals.

- [1] B. Afshari and G. E. Leigh. On closure ordinals for the modal mu-calculus. In S. R. D. Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 30–44. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 2013.
- [2] M. Czarnecki. How fast can the fixpoints in modal μ-calculus be reached? In L. Santocanale, editor, 7th Workshop on Fixed Points in Computer Science, FICS 2010, page 89, Brno, Czech Republic, Aug. 2010. Available from Hal: https://hal.archives-ouvertes.fr/hal-00512377.
- [3] G. Fontaine. Continuous fragment of the mu-calculus. In M. Kaminski and S. Martini, editors, Computer Science Logic, 22nd International Workshop, CSL 2008, Bertinoro, Italy, September 16-19, 2008. Proceedings, volume 5213 of Lecture Notes in Computer Science, pages 139–153. Springer, 2008.
- [4] D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354, 1983.
- [5] L. Santocanale. μ-bicomplete categories and parity games. ITA, 36(2):195–227, 2002.
- [6] L. Santocanale. μ-Bicomplete Categories and Parity Games. Research Report RR-1281-02, LaBRI
 - Laboratoire Bordelais de Recherche en Informatique, Sept. 2002. Available from from Hal: https://hal.archives-ouvertes.fr/hal-01376731.