\aleph_{1}, ω_{1}, and the modal μ-calculus

Maria João Gouveia ${ }^{1 *}$ and Luigi Santocanale ${ }^{2 \dagger}$
${ }^{1}$ CEMAT-CIÊNCIAS
Faculdade de Ciências, Universidade de Lisboa
mjgouveia@fc.ul.pt
${ }^{2}$ Laboratoire d'Informatique Fondamentale de Marseille
luigi.santocanale@lif.univ-mrs.fr

The modal μ-calculus \mathbf{L}_{μ}, see [4], enriches the syntax of (poly)modal logic \mathbf{K} with least and greatest fixed-point constructors μ and ν. In a Kripke model \mathcal{M}, the formula $\mu_{x} . \phi$ (resp., $\nu_{x} \cdot \phi$) denotes the least (resp., the greatest) fixed-point of the function $\phi_{\mathcal{M}}$ (of the variable x) obtained by evaluating ϕ in \mathcal{M} under the additional condition that x is interpreted as a given subset of worlds. It is required that every occurrence of x is positive in ϕ, so $\phi_{\mathcal{M}}$ is monotone and the least fixed-point exists by the Tarski-Knaster theorem.

A formula $\phi(x)$ is said to be continuous if, for every model \mathcal{M}, the function $\phi_{\mathcal{M}}$ is continuous, in the usual sense. The continuous fragment $\mathcal{C}_{0}(X)$ of the modal μ-calculus is the set of formulas generated by the following syntax:

$$
\phi:=x|\psi| \top|\perp| \phi \wedge \phi|\phi \vee \phi|\langle a\rangle \phi \mid \mu_{z} \cdot \chi
$$

where $x \in X, \psi \in \mathbf{L}_{\mu}$ is a μ-calculus formula not containing any variable $x \in X$, and $\chi \in$ $\mathcal{C}_{0}(X \cup\{z\})$. Fontaine [3] proved that a formula $\phi \in \mathbf{L}_{\mu}$ is continuous in x if and only if it is equivalent to a formula in $\mathcal{C}_{0}(x)$; she also proved that it is decidable whether a formula of the modal μ-calculus is continuous. We add to the above grammar one more production and study the fragment $\mathcal{C}_{1}(X)$ of \mathbf{L}_{μ} defined as follows:

$$
\phi:=x|\psi| \top|\perp| \phi \wedge \phi|\phi \vee \phi|\langle a\rangle \phi\left|\mu_{z} \cdot \chi\right| \nu_{z} \cdot \chi,
$$

with the same constraints as above but w.r.t $\mathcal{C}_{1}(X \cup\{z\})$.
Definition 1. Let κ be a regular cardinal. A set $\mathcal{I} \subseteq P(X)$ is κ-directed if every subset of \mathcal{I} of cardinality smaller than κ has an upper bound in \mathcal{I}. A function $f: P(X) \rightarrow P(X)$ is κ-continuous if it preserves unions of κ-directed sets.

Notice that, if $\kappa=\aleph_{0}$, then κ-continuity is the standard notion of continuity. The following proposition is an immediate consequence of the fact that \aleph_{1}-continuous functions are closed under parametrized least and greatest fixed-points, see [5, 6].
Proposition 2. Every formula in $\phi(x) \in \mathcal{C}_{1}(x)$ is \aleph_{1}-continuous.
The folllowing theorem is a sort of converse to the previous statement.
Theorem 3. For each formula $\phi(x) \in \mathbf{L}_{\mu}$ we can construct a formula $\psi(x) \in \mathcal{C}_{1}(x)$ such that $\phi(x)$ is κ-continuous for some regular cardinal κ if and only if $\phi(x)$ is equivalent to $\psi(x)$.

The consequences of this theorem are twofold.
Corollary 4. It is decidable whether a formula $\phi(x)$ is κ-continuous for some regular cardinal κ.

[^0]Corollary 5. If a formula is κ-continuous for some regular cardinal κ, then it is κ-continuous for some $\kappa \in\left\{\aleph_{0}, \aleph_{1}\right\}$.

That is, there are no other relevant fragments of the modal μ-calculus, apart from \mathcal{C}_{0} and \mathcal{C}_{1}, that are determined from some continuity condition.

Let us recall that, for a monotone function $f: P(X) \rightarrow P(X)$, we can define the approximants to the least fixed-point of f as follows: $f^{\alpha+1}(\emptyset)=f\left(f^{\alpha}(\emptyset)\right)$ and $f^{\beta}(\emptyset)=\bigcup_{\alpha<\beta} f^{\alpha}(\emptyset)$ (so $\left.f^{0}(\emptyset)=\emptyset\right)$. If $f^{\alpha+1}(\emptyset)=f^{\alpha}(\emptyset)$, then $f^{\alpha}(\emptyset)$ is the least fixed-point of f.

Definition 6. We say that and ordinal α is the closure ordinal of $\phi(x) \in \mathbf{L}_{\mu}$ if, for every model $\mathcal{M}, \phi_{\mathcal{M}}^{\alpha}(\emptyset)$ is the least fixed-point of $\phi_{\mathcal{M}}$, and moreover there exists a model \mathcal{M} for which $\phi^{\beta}(\emptyset)$ is not the least fixed-point of $\phi_{\mathcal{M}}$, for every $\beta<\alpha$.

Of course, not every formula $\phi(x) \in \mathbf{L}_{\mu}$ has a closure ordinal. For example [] x has no closure ordinal, while ω_{0} is the closure ordinal of []$\perp \vee\rangle x$. Czarnecki [2] proved that every ordinal $\alpha<\omega_{0}^{2}$ is the closure ordinal of a formula $\phi \in \mathbf{L}_{\mu}$. Afshari and Leigh [1] proved that if a formula $\phi(x) \in \mathbf{L}_{\mu}$ does not contain greatest fixed-points and has a closure ordinal α, then $\alpha<\omega_{0}^{2}$. Considering that every ordinal below ω_{0}^{2} can be written as a polynomial in the inderterminates $1, \omega_{0}$, our next theorem can be used to recover Czarnecki's result:

Theorem 7. Closure ordinals of formulas of the modal μ-calculus are closed under ordinal sum.

Since a formula $\phi(x)$ in the syntactic fragment $\mathcal{C}_{1}(x)$ is \aleph_{1}-continuous, the maps $\phi_{\mathcal{M}}$ converge to their least fixed-point in at most ω_{1} steps, where ω_{1} is the least uncountable ordinal (considering cardinals as specific ordinals, we have $\omega_{1}=\aleph_{1}$). In particular, every formula in this fragment has a closure ordinal with ω_{1} as an upper bound. We prove that ω_{1} is indeed a closure ordinal:

Theorem 8. ω_{1} is the closure ordinal of the formula $\phi(x):=\nu_{z} \cdot(\langle v\rangle x \wedge\langle h\rangle z) \vee[v] \perp$.
Extending Thomason's coding to the full modal μ-calculus, it is also possible to construct a monomodal formula in \mathbf{L}_{μ} whose only free variable is x, with ω_{1} as closure ordinal. Consequently, we extend Czarnecki's result by showing that polynomials in the inderterminates $1, \omega_{0}, \omega_{1}$ denote closure ordinals.
[1] B. Afshari and G. E. Leigh. On closure ordinals for the modal mu-calculus. In S. R. D. Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 30-44. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
[2] M. Czarnecki. How fast can the fixpoints in modal μ-calculus be reached? In L. Santocanale, editor, 7th Workshop on Fixed Points in Computer Science, FICS 2010, page 89, Brno, Czech Republic, Aug. 2010. Available from Hal: https://hal.archives-ouvertes.fr/hal-00512377.
[3] G. Fontaine. Continuous fragment of the mu-calculus. In M. Kaminski and S. Martini, editors, Computer Science Logic, 22nd International Workshop, CSL 2008, Bertinoro, Italy, September 1619, 2008. Proceedings, volume 5213 of Lecture Notes in Computer Science, pages 139-153. Springer, 2008.
[4] D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333-354, 1983.
[5] L. Santocanale. μ-bicomplete categories and parity games. ITA, 36(2):195-227, 2002.
[6] L. Santocanale. μ-Bicomplete Categories and Parity Games. Research Report RR-1281-02, LaBRI - Laboratoire Bordelais de Recherche en Informatique, Sept. 2002. Available from from Hal: https: //hal.archives-ouvertes.fr/hal-01376731.

[^0]: *Partially supported by FCT under grant SFRH/BSAB/128039/2016.
 ${ }^{\dagger}$ Partially supported by the Project TICAMORE ANR-16-CE91-0002-01.

