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This is the second half of a two-part talk on the lattice ΛDMM of subvarieties of the variety
DMM of all De Morgan monoids. The investigation is motivated by an anti-isomorphism be-
tween ΛDMM and the lattice of axiomatic extensions of the relevance logic Rt of [1]. Recall that
a De Morgan monoid A = 〈A; ·,∧,∨,¬, e〉 is the expansion of a commutative monoid 〈A; ·, e〉
by a residuated distributive lattice order and a compatible antitone involution ¬, where a 6 a2

for all elements a, and that f := ¬e.
The first talk established that the atoms of ΛDMM (i.e., the minimal varieties of De Morgan

monoids) are just the four varieties generated, respectively, by the De Morgan monoids depicted
below. They include the two-element Boolean algebra 2, and the three-element Sugihara monoid
S3. In the present talk, we aim to say as much as possible about the covers of these four atoms
in ΛDMM, since these define the ‘pre-maximal’ consistent axiomatic extensions of Rt.
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In ΛDMM, a cover K of one of the atoms (V(A), say) will be called interesting if K is not the
varietal join of V(A) and one of the other three minimal varieties. We can show:

Theorem 1. (i) V(2) has no interesting cover within DMM.

(ii) The only interesting cover of V(S3) within DMM is the variety V(S5) generated by the
five-element (totally ordered) Sugihara monoid.

(iii) Every interesting cover of V(D4) within DMM has the form V(A) for some simple 1–
generated De Morgan monoid A, where D4 embeds into A but is not isomorphic to A.

The situation with V(C4) is more complex, as can be guessed from the following result of
Slaney [2]: if h : A −→ B is a homomorphism from a finitely subdirectly irreducible De Morgan
monoid into a nontrivial 0–generated De Morgan monoid, then h is an isomorphism or B ∼= C4.
This motivates study of the class W of all De Morgan monoids that map homomorphically onto
C4 or are trivial, as well as its subclass N, consisting of De Morgan monoids that have C4 as a
retract or are trivial. It can be shown that W and N are quasivarieties, but neither is a variety.

Theorem 2. W has a largest subvariety, denoted here by U. Also, N has a largest subvariety,
denoted here by M. The varieties U and M are finitely axiomatized, and M consists of the De
Morgan monoids in U that satisfy e 6 f .
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Theorem 3. If K is an interesting cover of V(C4) within DMM, then exactly one of the
following holds.

(i) K ⊆ M.

(ii) K = V(A) for some finite 0–generated subdirectly irreducible De Morgan monoid A ∈
U \M.

(iii) K = V(A) for some simple 1–generated De Morgan monoid A, such that C4 embeds into
A but is not isomorphic to A.

As V(C4) is the only minimal subvariety of U, all covers of V(C4) within U are interesting
(i.e., they are not joins of atoms in ΛDMM). Only four De Morgan monoids A satisfy the
demand in Theorem 3(ii); they are depicted in Slaney [2], where they are labeled C5,C6,C7,C8.
Infinitely many covers of V(C4) exemplify Theorem 3(iii). Not all of them are finitely generated
varieties, and it appears to be difficult to classify them structurally.

Here, however, we are able to describe completely the covers of V(C4) within M, i.e., the
witnesses of Theorem 3(i). In particular:

Theorem 4. There are exactly six covers of V(C4) within M. Consequently, there are just
ten covers of V(C4) within U. All ten of these covers are finitely generated varieties.

A Dunn monoid is a distributive commutative residuated lattice, satisfying x 6 x2, so De
Morgan monoids are just Dunn monoids with a compatible involution. Slaney [3] discusses ways
of constructing De Morgan monoids S6(B) from Dunn monoids B, where B is a subalgebra of
the Dunn monoid reduct of S6(B). We refer to these methods as skew reflection constructions.
Each construction first creates a copy b′ of every element b of B and orders the new elements
so that b′ 6 c′ iff c 6 b. A new upper bound 1 and lower bound 0 for all of these elements is
introduced, and b′ · c′ is defined to be 1 for all b, c ∈ B. No element of the form b′ is a lower
bound of an element of B, but certain elements of B may be lower bounds of new elements
b′ (thus expanding the order relation 6 on the superstructure S6(B) of B), subject to certain
axioms. The axioms ensure that S6(B) really is a De Morgan monoid.

We can prove that a De Morgan monoid belongs to U iff it is a subdirect product of skew
reflections of Dunn monoids, where the bottom element 0 is meet-irreducible in every subdirect
factor. This limits the choices of algebras A such that V(A) generates a cover of V(C4) within
M. It forces A to be finite, and leads eventually to the proof of Theorem 4.

There are additional motivations for study of M, which come from considerations of struc-
tural completeness. The minimal varieties of De Morgan monoids are structurally complete, as
are the well-understood varieties of odd Sugihara monoids. We have shown that all remaining
structurally complete subvarieties of DMM lie within M, though not all subvarieties of M are
structurally complete. The following result is therefore of interest:

Theorem 5. Every cover of V(C4) within M has no proper subquasivariety other than V(C4),
and is thus (hereditarily) structurally complete.
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