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A De Morgan monoid A = 〈A; ·,∧,∨,¬, e〉 comprises a distributive lattice 〈A;∧,∨〉, a
commutative monoid 〈A; ·, e〉 satisfying x 6 x2 := x · x, and a function ¬ : A −→ A, called
an involution, such that A satisfies ¬¬x = x and x · y 6 z ⇐⇒ x · ¬z 6 ¬y. (The derived
operations x→ y := ¬(x ·¬y) and f := ¬e turn A into an involutive residuated lattice in the
sense of [3].)

The class DMM of all De Morgan monoids is a variety that algebraizes the relevance logic Rt

of [1]. Its lattice of subvarieties ΛDMM is dually isomorphic to the lattice of axiomatic extensions
of Rt. A Sugihara monoid is a De Morgan monoid that is idempotent, i.e., it satisfies x2 = x.
Sugihara monoids are subdirect products of chains. They are locally finite and well-understood
(see Dunn’s contributions to [1]).

In contrast, relatively little is known about the structure of (i) arbitrary De Morgan monoids
and (ii) the lattice ΛDMM. This situation is lamented in [8, p. 263] and [2, Sec. 3.5], which pre-
date many recent papers on residuated lattices. But the latter have concentrated mainly on
varieties incomparable with DMM (e.g., Heyting and MV-algebras), larger than DMM (e.g.,
full Lambek algebras) or smaller (e.g., Sugihara monoids). On the positive side, Slaney [5, 6]
showed that the free 0–generated De Morgan monoid is finite, and that there are only seven
non-isomorphic subdirectly irreducible 0–generated De Morgan monoids. No finiteness result of
this kind holds in the 1–generated case, however. This talk and its sequel report on an attempt
to enlarge our knowledge of DMM and its subvariety lattice.

Like any commutative residuated lattice, a De Morgan monoid A is finitely subdirectly
irreducible iff its neutral element e is join-irreducible. In this case, however, the extra features
of De Morgan monoids imply additional properties, e.g., A consists only of upper bounds of e
and lower bounds of f , i.e., A = [e) ∪ (f ]. To this description, we can add a new result:

Theorem 1. Every finitely subdirectly irreducible De Morgan monoid A consists of an interval
subalgebra [¬a, a] and two chains of idempotent elements, (¬a] and [a), where a is e or f2.

In the former case, [¬a, a] has at most two elements, and A is a Sugihara monoid. The case
a = f2 6= e is more challenging, as it involves non-idempotent elements and an order that need
not be linear. In both cases, e and f belong to the interval [¬a, a].

To describe the atoms of ΛDMM, we need to refer to the De Morgan monoids depicted below.
(If b is the least element of a De Morgan monoid, then a · b = b for all elements a.) Note that 2
is a Boolean algebra, and S3 is a Sugihara monoid. In what follows, V(A) [resp. Q(A)] denotes
the smallest variety [resp. quasivariety] containing an algebra A.
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Lemma 2. Up to isomorphism, 2, C4 and D4 are the only simple 0–generated De Morgan
monoids.

Theorem 3. The distinct classes V(2), V(S3), V(C4) and V(D4) are precisely the minimal
varieties of De Morgan monoids.

Lemma 2 is implicit in Slaney’s identification of the 0–generated subdirectly irreducible De
Morgan monoids, but it is easier to prove it directly. Theorem 3 (which uses Lemma 2) does
not seem to have been stated explicitly in the relevance logic literature.

It can also be shown that a subquasivariety of DMM is minimal (i.e., it contains no nontrivial
proper subquasivariety) iff it is V(S3) or Q(A) for some nontrivial 0–generated De Morgan
monoid A. Combining this observation with Slaney’s description of the free 0–generated De
Morgan monoid in [5], we obtain:

Theorem 4. The variety of De Morgan monoids has just 68 minimal subquasivarieties.

For philosophical reasons, the relevance logic literature also emphasizes a system called R,
which differs from Rt in that it lacks the so-called Ackermann truth constant t (corresponding
to the neutral element e of a De Morgan monoid). The logic R is algebraized by the variety
RA of relevant algebras. Świrydowicz [7] showed that the subvariety lattice of RA has a unique
atom, with just three covers. We remark that this result can be derived more easily from
Theorem 3 and the following finding of Slaney [6]: if h : A −→ B is a homomorphism from
a finitely subdirectly irreducible De Morgan monoid into a nontrivial 0–generated De Morgan
monoid, then h is an isomorphism or B ∼= C4.

Świrydowicz’s theorem has been applied recently to show that no consistent axiomatic ex-
tension of R is structurally complete, except for classical propositional logic [4]. The situation
for Rt is very different and is the subject of ongoing algebraic investigation by the present
authors.
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