First-order interpolation may be derived from propositional interpolation

Matthias Baaz ${ }^{1 *}$ and Anela Lolic ${ }^{2}$
${ }^{1}$ Institute of Discrete Mathematics and Geometry, Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
baaz@logic.at
${ }^{2}$ Institute of Discrete Mathematics and Geometry, Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
anela@logic.at

Following the ground breaking results of Maksimova [6] many families of propositional logics have been classified w.r.t. the interpolation property. However, on first-order level, the knowledge about interpolation is restricted. Moreover, it is not known which of the seven interpolating intermediary propositional logics [5] admit first-order interpolation (first-order infinitely-valued Gödel logic $G_{[0,1]}$ is the most notable example).

This lecture develops a general methodology to connect propositional and first-order interpolation. The construction of the first-order interpolant follows this procedure:

$$
\left.\begin{array}{c}
\text { existence of suitable Skolemizations }+ \\
\text { existence of Herbrand expansions }+ \\
\text { propositional interpolant }
\end{array}\right\} \rightarrow \begin{gathered}
\text { first-order } \\
\text { interpolation. }
\end{gathered}
$$

This methodology is realized for lattice-based finitely-valued logics, the top element representing true and can be extended to (fragments of) infinitely-valued logics.

The construction of the first-order interpolant from the propositional interpolant follows this procedure:

1. Develop a validity equivalent Skolemization replacing all strong quantifiers (negative existential or positive universal quantifiers) in the valid formula $A \supset B$ to obtain the valid formula $A_{1} \supset B_{1}$.
2. Construct a valid Herbrand expansion $A_{2} \supset B_{2}$ for $A_{1} \supset B_{1}$. Occurrences of $\exists x B(x)$ and $\forall x A(x)$ are replaced by suitable finite disjunctions $\bigvee B\left(t_{i}\right)$ and conjunctions $\bigwedge B\left(t_{i}\right)$, respectively.
3. Interpolate the propositionally valid formula $A_{2} \supset B_{2}$ with the propositional interpolant $I^{*}: A_{2} \supset I^{*}$ and $I^{*} \supset B_{2}$ are propositionally valid.
4. Reintroduce weak quantifiers to obtain valid formulas $A_{1} \supset I^{*}$ and $I^{*} \supset B_{1}$.
5. Eliminate all function symbols and constants not in the common language of A_{1} and B_{1} by introducing suitable quantifiers in I^{*} (note that no Skolem functions are in the common language, therefore they are eliminated). Let I be the result.

[^0]6. I is an interpolant for $A_{1} \supset B_{1} . A_{1} \supset I$ and $I \supset B_{1}$ are Skolemizations of $A \supset I$ and $I \supset B$. Therefore I is an interpolant of $A \supset B$.

This methodology is realized for lattice-based finitely-valued logics and can be extended to (fragments of) infinitely-valued logics (more precisely to fragments of first-order infinitelyvalued Gödel logic).

Consider Gödel logic $G_{[0,1]}$, the logic of all linearly ordered Kripke frames with constant domains. Its connectives can be interpreted as functions over the real interval $[0,1]$ as follows: \perp is the logical constant for $0, \vee, \wedge, \exists, \forall$ are defined as maximum, minimum, supremum, infimum, respectively. $\neg A$ is an abbreviation for $A \rightarrow \perp$ and \rightarrow is defined as

$$
u \rightarrow v= \begin{cases}1 & u \leq v \\ v & \text { else }\end{cases}
$$

The weak quantifier fragment of $G_{[0,1]}$ admits Herbrand expansions. This follows from cutfree proofs in hypersequent calculi $[1,2,3]$. This can be easily shown by proof transformation steps in the hypersequent calculus. Indeed, we can transform proofs by eliminating weak quantifier inferences:
i If there is an occurrence of an \exists introduction, we select all formulas A_{i} that correspond to this inference and eliminate the \exists introduction by the use of $\bigvee_{i} A_{i}$.
ii If there is an occurrence of a \forall introduction, we select all formulas B_{i} that correspond to this inference and eliminate the \forall introduction by the use of $\bigwedge_{i} B_{i}$.

With this procedure we do not infer weak quantifiers and combine the disjunctions/conjunctions to accommodate contractions. Propositional Gödel logic interpolates and therefore the weak quantifier fragment of $G_{[0,1]}$ interpolates, too.

The fragment $A \supset B, A, B$ prenex also interpolates: Skolemize as in classical logic, construct a Herbrand expansion, interpolate, go back to the Skolem form and use an immediate analogy of the $2 \mathrm{nd} \varepsilon$-theorem [4] to go back to the original formulas.

References

[1] Baaz, M., Ciabattoni, A., and Fermüller, C. G. Hypersequent calculi for Gödel logics - a survey. Journal of Logic and Computation 13, 6 (2003), 835-861.
[2] Ciabattoni, A. Hypersequent calculi for some intermediate logics with bounded Kripke models. Journal of Logic and Computation 11, 2 (2001), 283-294.
[3] Ciabattoni, A., Ramanayake, R., and Wansing, H. Hypersequent and display calculi-a unified perspective. Studia Logica 102, 6 (2014), 1245-1294.
[4] Hilbert, D., and Bernays, P. Grundlagen der Mathematik.
[5] Maksimova, L. L. Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras. Algebra and Logic 16, 6 (1977), 427-455.
[6] Maksimova, L. L. Interpolation properties of superintuitionistic logics. Studia Logica 38, 4 (1979), 419-428.

[^0]: *The first author discussed the problem of deciding the admissibility of interpolation in first-order logics on the basis of the admissibility interpolation in propositional logics with Petr Hájek who suggested that prooftheoretic approaches might help to overcome the lack of algebraization of first-order logics.

