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Following the ground breaking results of Maksimova [6] many families of propositional logics
have been classified w.r.t. the interpolation property. However, on first-order level, the knowl-
edge about interpolation is restricted. Moreover, it is not known which of the seven interpolating
intermediary propositional logics [5] admit first-order interpolation (first-order infinitely-valued
Gödel logic G[0,1] is the most notable example).

This lecture develops a general methodology to connect propositional and first-order inter-
polation. The construction of the first-order interpolant follows this procedure:

existence of suitable Skolemizations +
existence of Herbrand expansions +

propositional interpolant

→ first-order
interpolation.

This methodology is realized for lattice-based finitely-valued logics, the top element representing
true and can be extended to (fragments of) infinitely-valued logics.

The construction of the first-order interpolant from the propositional interpolant follows
this procedure:

1. Develop a validity equivalent Skolemization replacing all strong quantifiers (negative ex-
istential or positive universal quantifiers) in the valid formula A ⊃ B to obtain the valid
formula A1 ⊃ B1.

2. Construct a valid Herbrand expansion A2 ⊃ B2 for A1 ⊃ B1. Occurrences of ∃xB(x)
and ∀xA(x) are replaced by suitable finite disjunctions

∨
B(ti) and conjunctions

∧
B(ti),

respectively.

3. Interpolate the propositionally valid formula A2 ⊃ B2 with the propositional interpolant
I∗: A2 ⊃ I∗ and I∗ ⊃ B2 are propositionally valid.

4. Reintroduce weak quantifiers to obtain valid formulas A1 ⊃ I∗ and I∗ ⊃ B1.

5. Eliminate all function symbols and constants not in the common language of A1 and
B1 by introducing suitable quantifiers in I∗ (note that no Skolem functions are in the
common language, therefore they are eliminated). Let I be the result.

∗The first author discussed the problem of deciding the admissibility of interpolation in first-order logics on
the basis of the admissibility interpolation in propositional logics with Petr Hájek who suggested that proof-
theoretic approaches might help to overcome the lack of algebraization of first-order logics.
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6. I is an interpolant for A1 ⊃ B1. A1 ⊃ I and I ⊃ B1 are Skolemizations of A ⊃ I and
I ⊃ B. Therefore I is an interpolant of A ⊃ B.

This methodology is realized for lattice-based finitely-valued logics and can be extended
to (fragments of) infinitely-valued logics (more precisely to fragments of first-order infinitely-
valued Gödel logic).

Consider Gödel logic G[0,1], the logic of all linearly ordered Kripke frames with constant
domains. Its connectives can be interpreted as functions over the real interval [0, 1] as follows:
⊥ is the logical constant for 0, ∨,∧,∃,∀ are defined as maximum, minimum, supremum, infimum,
respectively. ¬A is an abbreviation for A→ ⊥ and → is defined as

u→ v =

{
1 u ≤ v

v else

The weak quantifier fragment of G[0,1] admits Herbrand expansions. This follows from cut-
free proofs in hypersequent calculi [1, 2, 3]. This can be easily shown by proof transformation
steps in the hypersequent calculus. Indeed, we can transform proofs by eliminating weak
quantifier inferences:

i If there is an occurrence of an ∃ introduction, we select all formulas Ai that correspond
to this inference and eliminate the ∃ introduction by the use of

∨
i Ai.

ii If there is an occurrence of a ∀ introduction, we select all formulas Bi that correspond to
this inference and eliminate the ∀ introduction by the use of

∧
i Bi.

With this procedure we do not infer weak quantifiers and combine the disjunctions/conjunctions
to accommodate contractions. Propositional Gödel logic interpolates and therefore the weak
quantifier fragment of G[0,1] interpolates, too.

The fragment A ⊃ B, A,B prenex also interpolates: Skolemize as in classical logic, construct
a Herbrand expansion, interpolate, go back to the Skolem form and use an immediate analogy
of the 2nd ε-theorem [4] to go back to the original formulas.
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