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States of MV-algebras [6] are [0, 1]-valued functions, which generalise finitely-additive prob-
ability measures on boolean algebras, and whose domains are MV-algebras [2]. Flaminio and
Montagna [3] introduced an internal state as an additional unary operation σ : M → M satis-
fying certain equational laws on an MV-algebra M . Internal states capture the basic properties
of states in a setting amenable to universal-algebraic techniques.

In our note [5] we made first steps towards a general two-sorted algebraic model for ex-
pressing the notion of state between two MV-algebras M and N , making thus a fundamental
distinction between events (captured by elements of the domain M) and probability degrees
(represented by the co-domain N). A generalised state of M with values in N is a mapping
s : M → N such that for every a, b ∈ M the following hold: s(a ⊕ b) = s(a) ⊕ s(b ∧ ¬a),
s(¬a) = ¬s(a), and s(>) = >. A state algebra is a two-sorted algebra (M,N, s), where the
operations of M and N are in the single sorts given by M and N , respectively, and the only
operation between the two sorts is the generalised state s. The class of all state algebras con-
stitutes a two-sorted algebraic variety. Most universal-algebraic constructions and results have
analogous correspondents in the multi-sorted setting [1].

In this contribution we will characterise the free state algebra F(S1, S2) generated by a two-
sorted set of generators (S1, S2). The free state algebra can be expressed as

F(S1, S2) = F(S1, ∅)q F(∅, S2),

where F(S1, ∅) and F(∅, S2) are the free state algebras over (S1, ∅) and (∅, S2), respectively,
and q denotes the coproduct operation in the multi-sorted algebraic category of state algebras.

First, the algebra F(S1, ∅) is isomorphic to the state algebra (F (S1), 〈 ̂F (S1)〉, α), where F (S1) is

the free MV-algebra over S1, 〈 ̂F (S1)〉 is the affine representation of F (S1) (see [4]), and α is the

evaluation map F (S1)→ 〈 ̂F (S1)〉 sending elements of F (S1) to [0, 1]-valued affine functions over
the state space of F (S1). Second, the free state algebra over (∅, S2) is F(∅, S2) = (2, F (S2), s0),
where 2 is the two-element MV-algebra, F (S2) is the free MV-algebra generated by S2, and s0
is the only possible generalised state 2→ F (S2). We will show that

F(S1, ∅)q F(∅, S2) = (F (S1), 〈 ̂F (S1)〉 qMV F (S2), β1 ◦ α),

where
〈 ̂F (S1)〉 qMV F (S2)

is the coproduct (free product [7]) of MV-algebras 〈 ̂F (S1)〉 and F (S2), and the map

β1 : 〈 ̂F (S1)〉 → 〈 ̂F (S1)〉 qMV F (S2) is the coproduct injection.
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