Rooted frames for fusions of multimodal logics

Sławomir Kost

University of Opole, Opole, Poland skost@math.uni.opole.pl

Most of monomodal logics are characterized by classes of frames (see e.g. [1],[2]). It is even possible to use single connected frames for some logics. The additional modalities make the problem of seeking one connected frame more demanding.

Consider a propositional n-modal language \mathcal{L}_1 with modal operators $\square_1, \ldots, \square_n$ and a propositional m-modal language \mathcal{L}_2 with modal operators $\square_{n+1}, \ldots, \square_{n+m}$. Let us denote by $\mathcal{L}_{1,2}$ the propositional n+m-modal language with operators $\square_1, \ldots, \square_n, \square_{n+1}, \ldots, \square_{n+m}$. The smallest n+m-modal logic in the language $\mathcal{L}_{1,2}$ containing $L_1 \cup L_2$ is called a fusion of $L_1 \subset \mathcal{L}_1$ and $L_2 \subset \mathcal{L}_2$. We write $L_1 \oplus L_2$ for the fusion of L_1 and L_2 .

A Kripke n-frame $\mathfrak{B} = \langle V, H_1, \ldots, H_n \rangle$ is called a *subframe* of a frame $\mathfrak{F} = \langle W, R_1, \ldots, R_n \rangle$ if $V \subseteq W$ and H_i is the restriction of R_i to V (i.e. $H_i = R_i \cap (V \times V)$), for all $i \in \{1, \ldots, n\}$. A subframe \mathfrak{B} of \mathfrak{F} is called a *generated subframe* of \mathfrak{F} if for each $y \in W$, $y \in V$ if xR_iy for some $x \in V$ and some $i \in \{1, \ldots, n\}$. The subframe of the frame \mathfrak{F} generated by the set $U \subseteq W$ will be denoted by $[U]_{\mathfrak{F}}$. If $U = \{x\}$, we write $[x]_{\mathfrak{F}}$ instead of $[\{x\}]_{\mathfrak{F}}$. For a given class \mathcal{C} of n-frames, let $PGS(\mathcal{C})$ be the class of all subframes of the frames from the class \mathcal{C} generated by a single point. In symbols

$$PGS(\mathcal{C}) = \{ [x]_{\mathfrak{F}} : \mathfrak{F} = \langle W, R_1, \dots, R_n \rangle \in \mathcal{C}, x \in W \}.$$

A Kripke n-frame $\mathfrak{F} = \langle W, R_1, \dots, R_n \rangle$ is rooted if $\mathfrak{F} = [x]_{\mathfrak{F}}$ for some $x \in W$ i.e. if there exists $x \in W$ such that for each $y \in W \setminus \{x\}$ there exists a sequence (x_1, \dots, x_{k-1}) of elements from W such that

$$xR_{i_1}x_1, x_1R_{i_2}x_2, \dots, x_{k-2}R_{i_{k-2}}x_{k-1}, x_{k-1}R_{i_{k-1}}y,$$

where $i_j \in \{1, ..., n\}$. The point x is called a root of the frame \mathfrak{F} .

Let L_1 be an n-modal logic and L_2 be an m-modal logic. Assume that L_1 and L_2 are characterized by classes of rooted frames C_1 and C_2 , respectively. It is already known that there exists a class of n + m-frames that characterizes n + m-modal logic $L_1 \oplus L_2$ (see e.g. [3],[4]).

Consider a class \mathcal{C} of rooted frames. Let \mathfrak{F} be a frame with a root x. We say that the point x is a \mathcal{C} -root if for each $\mathfrak{G} \in \mathcal{C}$ and a root y of \mathfrak{G} there exists a p-morphism from \mathfrak{F} to \mathfrak{G} sending x to y.

Let us consider the class $C_{Grz.3} = \{\mathfrak{F}^n_{Grz.3} = \langle \{1,\ldots,n\},\geq \rangle : n \in \mathbb{N} \}$ of all finite chains. A frame with a $C_{Grz.3}$ -root is $\mathfrak{F}^r_{Grz.3} = \langle W',\leq \rangle$, where

$$W' = \left\{ \frac{1}{n} \colon n \in \mathbb{N} \right\} \cup \{0\}.$$

Let us consider the chain $\mathfrak{F}^6_{Grz.3}$. Point 6 is a root of the frame $\mathfrak{F}^6_{Grz.3}$, therefore f(0)=6. It is necessary to preserve order. In next steps $f(1)=1,\ f(\frac{1}{2})=2,\ f(\frac{1}{3})=3,\ f(\frac{1}{5})=5,\ f(\frac{1}{k})=6$ for $k\geq 6$.

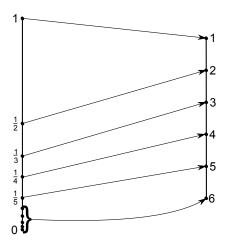


Figure 1: $\mathfrak{F}^r_{Grz,3} \to \mathfrak{F}^6_{Grz,3}$

Let L_1 be an n-modal logic and L_2 be an m-modal logic. Assume that L_1 and L_2 are characterized by classes of rooted frames C_1 and C_2 , respectively. Classes C'_1 and C'_2 are closures of C_1 and C_2 , respectively, under the formation of disjoint unions and isomorphic copies. Moreover, let $\mathfrak{F}^1 = \langle W_1, R_1, \ldots, R_n \rangle$ be an L_1 -frame with $PGS(C_1)$ -root and $\mathfrak{F}^2 = \langle W_2, R_{n+1}, \ldots, R_{n+m} \rangle$ be an L_2 -frame with $PGS(C_2)$ -root.

In the talk we will show how to construct a rooted frame $\mathfrak{F}^r = \langle W^r, S_1, \dots, S_{n+m} \rangle$ which characterizes the n+m-modal logic $L_1 \oplus L_2$ and has the following properties

- (a) \mathfrak{F}^r is countable if \mathfrak{F}^1 and \mathfrak{F}^2 are countable;
- (b) each S_1, \ldots, S_n -connected component of the frame \mathfrak{F}^r is isomorphic to the frame \mathfrak{F}^1 ;
- (c) each S_{n+1}, \ldots, S_{n+m} -connected component of the frame \mathfrak{F}^r is isomorphic to the frame \mathfrak{F}^2 ;
- (d) \mathfrak{F}^r is a frame with a $PGS(\mathcal{C}'_1 \oplus \mathcal{C}'_2)$ -root;
- (e) for each n+m-formula φ , $\mathfrak{F}^r \models \varphi$ if and only if φ is valid in a $PGS(\mathcal{C}_1' \oplus \mathcal{C}_2')$ -root of the frame \mathfrak{F}^r .

References

- [1] Patrick Blackburn, Maarten De Rijke, and Yde Venema. *Modal Logic*, volume 53 of *Cambridge Tracts in Theoretical Computer Science*. Cambridge University Press, 2001.
- [2] A. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford logic guides. Oxford University Press, 1997.
- [3] D.M.Gabbay, A.Kurucz, F.Wolter, and M.Zakharyaschev. Many-Dimensional Modal Logics: Theory and Applications. Elsevier Science, 2003.
- [4] K.Fine and G.Schurz. Transfer theorems for multimodal logics. Logic and Reality, pages 169–213, 1996.