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In algebraic logic, one is accustomed to considering, for example, the inherent order on
a distributive lattice as capturing entailment between propositions within a particular logic.
Generalizing this to morphisms between algebras, one thinks about binary relations that capture
a notion of entailment between logics. At a mimimum, these relations should respect the
algebraic structure under consideration, and should in some sense still capture a notion of
entailment (that is, order). Respect for the algebraic structure means, essentially, that the
relations ought to be relations in the category of the algebras. Capturing entailment means that
the relations should be closed under strengthening of premises and weakening of conclusions.
Putting these ideas together leads to a natural relational setting for algebraic logic.

Natural duality has its most familiar instances in categories of algebras and spaces that are
relevant to (positive) algebraic logic by virtue of being concrete over posets. The objects come
equipped with partial order with respect to which the morphisms and operations are monotonic.
For example, Priestley duality, Stone duality, Banaschewski duality (between partially ordered
sets and Stone distributive lattices), and Hofmann-Mislove-Stralka duality (between semilattices
and Stone semilattices) all are concrete over posets. Note that while a Stone space has a
trivial order, that fact is precisely the feature that distinguishes a Stone space from a Priestley
space. So even Stone duality fits the general ordered scheme, when one takes the duals to be
complemented distributive lattices.

We study how one extends a duality between ordered algebras and ordered spaces to rela-
tions. The motivation is to understand the general setting in which relation lifting carries over
to these dualities.

For this abstract, we restrict our attention only to DL, the category of bounded distributive
lattices, and Pri, the category of Priestley spaces. In the full paper we consider a more general
setting to include other varieties of algebras and their dual spaces.

In a category A with pullbacks, one defines Span(A) as the category of isomorphism classes
of spans A← R→ B with composition being defined by pullbacks. So in particular Span(DL)
and Span(Pri) make sense because both categories have pullbacks.

The categories DL and Pri are both equipped with suitable factorization systems (E ,M) for
spans (factoring a span into an epimorphism e followed by a jointly monic span m), so that
categories Rel(DL) and Rel(Pri) arise by taking morphisms to be the monomorphic spans. In
DL, these are essentially sublattices of A×B. In Pri, they are merelty compact subspaces (with
the induced order) of the X × Y . Composition is defined by pullback and renormalizing via
the factorization system. Again in both Rel(DL) and Rel(Pri), this means that composition is
concretely the usual relational composition.

Looking toward duality, we are faced immediately with a problem. The dual of a span
A ← R → B in distributive lattices is a cospan 2A → 2R ← 2B in Priestley spaces, and
vice versa. Nevertheless, Rel(DL) provides precisely those relations that respect the algebraic
structure of the objects. And Rel(Pri) provides a similar service for topological structure of
Priestley spaces.

To obtain relations that also respect entailment (closure under strengthening of premises and
weakening of conclusions), we consider weakening relations, i.e., those binary relations between
posets that are closed under the following rule: a ≤ a′, a′Rb′ and b′ ≤ b implies aRb. Because
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DL and Pri are both concrete over Pos, we can define weakening relations between objects to
be morphisms in Rel(DL) or Rel(Pri) that are closed under the weakening rule.

Putting things together, DL and Pri have suitable structure for defining relations gener-
ally, and have forgetful functors into Pos so that weakening relations make (forgetful) sense.
Moreover, the composition of relations in DL and Pri coincides concretely with composition of
weakening relations in Pos. So we define categories DL and Pri as the subcategories of Rel(DL)
and Rel(Pri) consisting of relations which forgetfully are weakening relations.

Specifically, in DL, a morphism corresponds exactly to a relation closed under the familar
proof calculus rules for positive logic. In Pri, a morphism is simply a compact upper set in
Xop × Y . Notice that these categories are both order-enriched, by taking relations orered by
inclusion.

The main problem now is to understand how the natural duality of DL and Pri lifts to DL and
Pri. Our main additional tool is the weighted limits of cospans and weighted colimits of spans.

Call a cospan P
j← C

k→ Q in Pos bipartite if k and j are embeddings and for every p ∈ P ,
every q ∈ Q, kq � jp. We show that the duals of weakening relations in DL are exactly the
bipartite cospans in Pri, and that commas of bipartite cospans in Pri are exact and determine
weakening spans in Pri. Thus we have the main theorem.

Theorem 1. The order enriched categories DL and Pri are dually equivalent on 1-cells and
equivalent on 2-cells.

Now from this duality, we recover the original duality of DL and Pri by noting that is
both settings, adjoint pairs of weakening relations determine and are determined by functions.
That is, im DL, define Map(DL) to consist of pairs of relations (R,S) so that 1A ≤ S ◦ R and
R ◦ S ≤ 1B . Define Map(Pri) likewise.

Lemma 1. The category Map(DL) is equivalent (actually isomorphic) to DL.

Now since the duality for relations preserves order on hom-sets, it also follows that Map(Pri)
is dually equivalent to Map(DL).

Although we have paid attention to Priestley duality here, many of the technical results
depend only more general structure of DL and Pri. In the full paper, we discuss sufficient
conditions for a natural duality between categories A and X that are conrete over Pos to lift to
A and X .
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