Undecidability of $\{\cdot, 1, \lor\}$ -equations in subvarieties of commutative residuated lattices

Gavin St. John¹

University of Denver, Denver, Colorado, United States of America gavin.stjohn@du.edu

The decidability of the equational and quasi-equational theories for commutative residuated lattices $(C\mathcal{RL})$ axiomatized by $\{\cdot, 1, \leq\}$ -inequalities have been fully classified. It has been shown that quasi-equational theories axiomatized by *knotted inequations* (\mathbf{k}_n^m) , i.e. universally quantified inequations of the form $x^n \leq x^m$ for $n \neq m$, are not only decidable, but also have the finite embedability property (FEP) [5]. In fact, $C\mathcal{RL} + (\mathbf{k}_n^m) + \Gamma$ has the FEP for any set Γ of $\{\cdot, 1, \leq\}$ -equations [2]. Viewed proof-theoretically, these results show that the Full Lambek calculus with exchange (\mathbf{FL}_e) axiomatized by knotted inference rules have decidable consequence relations.

In [1], it is shown that $\mathbf{FL}_{\mathbf{c}}$ is undecidable, which algebraically corresponds to $\mathcal{RL} + (\mathbf{k}_1^2)$ having undecidable quasi-equational and equational theories. In fact, for $1 \leq n \leq m$, [1] shows that there exists a residuated lattice \mathbf{R} in the variety $\mathcal{RL} + (\mathbf{k}_n^m)$ such that, for any variety \mathcal{V} ,

 $\mathbf{R} \in \mathcal{V} \implies \mathcal{V}$ has undecidable quasi-equational and equational theories.

As a consequence of this, certain non-commutative varieties satisfying equations in the signature $\{\cdot, 1, \lor\}$ are also shown to be undecidable.

However, in the commutative case, little is known about the decidability of $CR\mathcal{L}$'s axiomatized by equations in the signature $\{\cdot, 1, \vee\}$, e.g. the effect of inequations such as $x \leq x^2 \vee 1$ or $xy \leq x^2y \vee x^3y^2$ on decidability in $CR\mathcal{L}$ is unknown.

The present work defines a class D of $\{\cdot, 1, \lor\}$ -equations such that the following theorem is obtained:

Theorem 1. If $(d) \in D$, then there exists \mathbf{R}_d in $\mathcal{CRL} + (d)$ such that for every variety \mathcal{V} ,

 $\mathbf{R}_{d} \in \mathcal{V} \implies \mathcal{V}$ has an undecidable quasi-equational theory.

Furthermore, as a consequence of the above theorem, there is a subclass $D' \subset D$ such that

Corollary 2. If $(d) \in D'$, then there exists \mathbf{R}_d in $C\mathcal{RL} + (d)$ such that for every variety \mathcal{V} ,

 $\mathbf{R}_{d} \in \mathcal{V} \implies \mathcal{V}$ has an undecidable equational theory.

As in [1], [3], and [4], we use *counter machines* (CM), a variant of Turing Machines, for our undecidable problem. From a given a CM M and rule (d) $\in D$, we construct a new machine M_d and a commutative idempotent semi-ring \mathbf{A}_{M_d} . We interpret machine instructions of M_d as relations on \mathbf{A}_{M_d} , and define a new relation $<_M$ on \mathbf{A}_N such that

M halts on input $C \iff \theta(C) <_M q_f$,

where q_f is a designated element A_{M_d} and θ is a certain function on the configurations of M into the set A_{M_d} .

We then simulate the rule (d) in \mathbf{A}_{M_d} by a new relation $<_{\mathbf{d}}$ extending $<_M$ that, on the one hand, satisfies certain restricted consequences of the rule (d), and on the other hand, maintains the property that

M halts on input
$$C \iff \theta(C) <_{\mathrm{d}} q_f$$
.

Lastly, following the methods utilized in [1], we use the theory of residuated frames [2] to construct a residuated lattice \mathbf{W}^+ in $\mathcal{CRL} + (d)$ from $\langle A_{M_d}, \langle_d, \cdot \rangle$ that has the halting problem from the machine M encoded into the order of \mathbf{W}^+ , effectively interpreting a halting problem into any variety that contains \mathbf{W}^+ . Membership in D is equivalent to whether certain systems of linear equations admit positive solutions. Let

$$\forall (x_1, ..., x_n) \ x_1 x_2 \cdots x_n \le \bigvee_{(c_1, ..., c_n) \in C} x_1^{c_1} x_2^{c_2} \cdots x_n^{c_n}$$

be the linearization of some $\{\cdot, 1, \vee\}$ -equation (r), where $C \subset \mathbb{N}^n$ is finite. Then (r) $\notin D$ if and only if there exists a positive solution to the system of linear equations

$$\left\{\sum_{i=1}^{n} c_i x_i = \sum_{i=1}^{n} d_i x_i : (c_1, ..., c_n), (d_1, ..., d_n) \in C_X\right\},\$$

where

$$C_X := \{ (c_1, ..., c_n) \in C : (\exists i \in X) \ c_i > 0 \}$$

for some $X \subseteq \{1, ..., n\}$.

The members of D' are those equations (r) in D such that (r) has, as a consequence, an inequation of the form:

$$(\forall x) \ x^n \le \bigvee_{i=1}^m x^{n+c_i},$$

where $n, c_1, ..., c_m > 0$, and as a consequence of membership in $D, m \ge 2$.

References

- K. Chvalovský, R. Horčík, Full Lambek calculus with contraction is undecidable. J. Symbolic Logic 81(2):524-540, 2016
- [2] N. Galatos, P. Jipsen, Residuated frames with applications to decidability. Trans. Amer. Math. Soc. 365(3):1219-1249, 2013.
- [3] P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar, Decision problems for proposition linear logic. Annals of Pure and Applied Logic 56:239-311, 1992.
- [4] A. Urquhart, The complexity of decision procedures in relevance logic. II. J. Symbolic Logic 64(4):1774-1802, 1999.
- [5] C.J. van Alten, The finite model property for knotted extensions of propositional linear logic. J. Symbolic Logic 70(1): 84-98,2005.