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1 Introduction

A residuated Boolean algebra is an algebra (A, A,V,”, T, L e\ /) where (A,A,V,/, T, 1) isa
Boolean algebra, and e, \ and / are binary operators on A satisfying the following residuation
property: for any a,b,c € A,

aeb<ciff b<a\ciffa<c/b

The operators \ and / are called right and left residuals of the fusion e respectively.

Residuated boolean algebras are introduced by Jénsson and Tsinakis [3] as generalizations
of relation algebras. Jispen [2] proved that the equational theory of residuated boolean algebras
with unit, and that of many relative classes of algebras are decidable. Buszkowski [1] showed
the finite embeddability property for residuated boolean algebras, which yields the decidability
of the universal theory of residuated boolean algebras. The complexity of the equational theory
of residuated boolean algebras is solved in [4], where the main result is that the equational
theory of residuated boolean algebras is PSPACE-complete.

Generalized residuated Boolean algebras are introduced in [1]. The generalization is from
binary to arbitrary n > 2 ary residuals. Instead of a single binary operator e, generalized
residuated algebras admit a finite number of finitary operations o. With each n-ary operation
0; (1 < i < m) there are associated n residual operations o/j (1 < j < n) which satisfy the
following generalized residuation law:

oi(al,...,an)gb lﬁ ajS(oi/j)(al,...,aj_l,b,aj+1,...,an)

A generalized residuated Boolean algebra is a Boolean algebra with generalized residual opera-
tions. The aim of this paper is to show that the complexity of the equational theory of such
algebras is still PSAPCE-complete. Our proof is by reducing the decidability of the equational
theory into the decidability of a sequent calculus for generalized Boolean residuated algebra.

2 Generalized BFNL

The sequent calculus for Boolean residuated algebras, namely Boolean full nonassociative Lam-
bek calculus (BFNL), is introduced in [1]. Here we shall introduce the sequent calculus GBFNL
for generalized residuated Boolean algebras. The formulae are defined as usual (cf. [4]). Struc-
tures are defined inductively as follows:

(1) All formulae are structures.
(2) For m-ary operator o; (n > 2) and structures I'1,..., Ty, (T'1,...,Tn),, is a structure.

By I'[ ] we mean a structure with a single position which can be filled with a structure.



Definition 2.1. The sequent calculus GBFNL for generalized residuated Boolean algebras con-
sists of the following axioms and rules:

(1) Axioms:
(Id) A= A (D) AA(BVC) = (AAB)V(AAC)
(T)F:>T (L)F[L]:>A (ﬁl)A/\ﬁAiL (ﬁ?)T:>A\/ﬁA
(2) Rules:
F[(Al,...,An)ov] = A (oiL) F1:>A1,7Fn:>AT, (OiR)

F[Oi(Al, . ,An)] = A (Fl, . arn)oi = Oi(Ala .. ,An)

AT, (0/) A A Tw)o] = B
(Ar,.... T, An)o, = A

(0i/iL)

TS o0/j(Ar,. Ay AR
I'[4;] = B I'sA I'=B
A Toass MW
I'A]= B T[A;]=B I'=s A A=A T[A]=B
ravaiss Y roava VP NE

The sequent calculus GBFNL can be simulated by a multi-sorted Boolean nonassociative
Lambek calculus which is denoted by MBFNL. This means that n-ary residuals can be trans-
lated into binary ones. A translation i from GBFNL to MBFNL can be defined inductively as
usual. In particular, we have the following translation of residuals:

(1) (A An)o)t = (o ((Ar o5 Az) ) @i Ay).
(2) (0i/3)(Av,..., Ap)t = (- (A1 05 Az) ) & Aj_1)\i(- -+ (4;/iAn) - ++)/iAj41).
(3) M1y Ta)d, = (- ((Tr0iT2) -+ ) 0 T).

This translation is faithful. We may easily obtain the following theorem of simulation:

Theorem 2.2. FGBNFL I'= A fo FMBFNL FT = AT.

3 Complexity of GBFNL

The second step to solve the complexity problem is to simulate MBFNL by a multi-sorted tense
logic MKt which is the multi-modal version of basic tense logic Kt. The translation # defined in
[4], which embeds BFNL into two-sorted tense logic Ktlﬁz, can be extended to simulate MBFNL.
Each n-ary product operator o; is translated via n pairs of tense operators. The following results
can be obtained as in [4].

Theorem 3.1. }_MBFNL I' = A Zﬁ }_MKt (f(F))# D] A#-

Moreover, using the technique in [4], one can simulate MKt by the basic tense logic Kt via
a similar translation * as in [4].

Theorem 3.2. byt A iff Fry A*.



Since the complexity of Kt is PSPACE-complete, it follows that GBFNL is in PSPACE. On
the other hand, we may define a translation { from the modal logic K to GBNFL as in [4] such
that (©A) =o(my,...,m,_1,A). Then we obtain the following simulation result:

Theorem 3.3. For any modal formula A, Fx A iff Faenrr, T = Af.

Since the modal logic K is PSAPCE-complete, it follows that GBFNL is PSPACE-hard.
Therefore we get the following theorem:

Theorem 3.4. GBFNL is PSPACE-complete.

As a consequence, the equational theory of generalized Boolean residuated algebras is
PSPACE-complete.

4 More complexity results

If we change the Boolean basis of a generalized Boolean residuated algebra into distributive
lattices, we get generalized distributive residuated lattices. We also obtain the generalized
distributive full nonassociative Lambek calculus (GDFNL) for such algebras.

Theorem 4.1. GBFNL is a conservative extension of GDFNL.

It follows that GDFNL is in PSPACE. We reduce the satisfiability of a QBF to the validity
of consequence relation of distributive lattice with bi-tense operators. The equational theory of
distributive lattices with bi-tense operators is PSPACE-hard. Then GDFNL is PSPACE-hard.

Theorem 4.2. GDFNL is PSPACE-complete. Hence DFNL is PSPACE-complete.
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