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The natural join and inner union of tables in relational databases can be algebraically
modeled as the meet and the join operations in a class of lattices, the class of relational lattices.
The connection between these lattices and databases is well illustrated in previous work on the
subject, see [8, 3]. We recall here only the mathematical definition of these lattices and discuss
some recent advances on their quasiequational and equational theories.

The set of functions from A to D—noted here D4—can be endowed with the structure of a
generalized ultrametric space where the distance takes values in the powerset algebra P(A), see
[5, 1]. Namely, define the distance between f,g € DA by 6(f,g) :={a € A| f(a) # f(g)}. A
subset X C D4 is a-closed if §(f,g) C o and g € X implies f € X; a pair (o, X) € P(A) x DA
is closed if X is a-closed; the closed pairs form a Moore family on P(A) x P(D*). The relational
lattice R(D, A) is, up to isomorphism, the lattice of closed pairs of P(A) x P(D4).

It was proved in [3] that the quasiequantional theory of relational lattices, over the signature
which contains the lattices operations A,V as well as an additional constant H (the header
constant), is undecidable. We recently refined this result and proved that the quasiequational
theory of relational lattices, over the pure lattice signature, is undecidable, [6, 7]. We actually
proved there a stronger statement:

Theorem 1. It is undecidable whether a finite subdirectly irreducible lattice can be embedded
into a relational lattice.

The proof is a reduction from the coverability problem for S5 universal product frames, see
[2]. Tt also allows us to find a quasiequation that holds in all the finite R(E, A), but failing in
some infinite R(D, A), with A finite. A universal product frame is a special dependent product,
thus of the form [],. 4, Da; with the same definition as above, we can give to dependent products
the structure of a generalized ultrametric space. The reduction crucially relies on the following
statement, whose proof appears in [6].

Theorem 2. The spaces ([[,c4 Da,d) are, up to isomorphism, the pairwise-complete and
spherically complete generalized ultrametric spaces.

Using a result from [1] these spaces are, up to isomorphism, the injective objects in the
category of generalized ultrametric spaces over P(A).

Coming back to the theories of relational lattices, a natural aim is to move from quasiequa-
tions to equations and to relate equational theories of infinite relational lattices to the equational
theories of the finite ones. Many informations can be deduced by analysing the functorial prop-
erties of the construction R(_,.). For ¢ : E — D, 7 : A — B, and (o, X) € R(D, A), put

R(D,’/T)(Ot,X) = (Vﬂ'(a)aﬂ*_l(X))v R(ilf, A)(aaX) = (aaw;l(X)) .

Here, for f € D#, we have 7*(f) = f o, 1.(f) = o f, and V, is right adjoint to 7~!. Notice
that R(D,7) o R(3p, A) = R(¢, A) o R(D, ), so we can define R(¢), 7) := R(D, ) o R(), A).
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Proposition 3. The construction R(_, _) is a functor from Set® x Set to cSL,, the category of
complete meet-semilattices and maps preserving all meets.

For ¢ and 7 as above, let £, : R(E, A) — R(D, A) be left adjoint to R(¢, A) : R(D,A) —
R(E,A); let £, : R(D,B) — R(D, A) be left adjoint to R(D,n) : R(D,A) — R(D, B). The
following two observations are crucial.

Proposition 4. If E # () and v : E — D is injective, then ly, is injective and preserves all the
meets. If ¢ : A — B is surjective, then £, is injective and preserves all the meets.

In particular, R(E, B) belongs to the variety generated by R(D, A) whenever E C D and
A C B. When all these sets are finite, it is possible to look at the combinatorial proprieties
the OD-graphs to assert that the two varieties are not equal, see [4]. Using Proposition 2, we
derive the following theorem, showing that, for equations, the situation is quite different from
the one of quasiequations.

Theorem 5. If A is finite, then R(D,A) belongs to the variety generated by all the finite
R(E, A).

Indeed, R(D, A) is an algebraic lattice, thus it is isomorphic to the ideal completion of the
join-semilattice of its compact elements. Yet, this join-semilattice is the colimit of the diagram
wao,El where Ey C Ey C D, Ey, Eq are non-empty and finite, and ¢ g, g, is the inclusion of
Ey into E;. In particular this colimit is a lattice in the variety generated by the finite R(E, A).
It is well known that the ideal completion of a lattice and the lattice satisfy same the same
identities.

If A is infinite, then R(D, A) is not an algebraic lattice, yet something can be said when D
is finite.

Theorem 6. If D is finite, then R(D, A) lies in the variety generated by all the finite R(D, B).

Let Part;(A) be the set of finite partitions of A, and consider the canonical maps 7g : A — @
with @ € Part;(A), as well as the maps mg p : Q@ — P, for Q, P € Partj(A) such that @Q refines
P, sending a block of ) to the block of P that contains it. The maps R(D, mg) induce a canonical
map 7 : R(D, A) — limgepar;a) R(D, Q) in the category cSLx, where limgepart,(4) R(D, Q)
is the inverse limit of the maps R(D,mg p). We argue that if D is finite, then 7 is injective
and preserves finite joins. Now, limgepar;(a) R(D, Q) is an algebraic lattice, and the poset of
its compact element can be identified with the colimit (in the category of join-semilattices) of
the diagram (., , : R(D,P) — R(D,Q), for Q, P € Part;(A) and @Q refines P. As before,
limgepart;(4) R(D, Q) belongs to the variety generated by the R(D,Q), that are finite. As
R(D, A) embeds into limgepart;a) R(D, Q), then the same holds of R(D, A).

If both D and A are infinite, then the canonical map 7 is not an embedding. The tools used to
prove Theorems 3 and 4 allow us to identify a complete lattice Ry,—the limit limgepart; (4) R(D,Q)—
which is a unique generator for the variety generated by the finite R(E, B). The quest for a
characterization of the equational theory of relational lattices might involve recognizing R, as
a sublattice of R(D, A) and how equational properties extend from the smaller lattice to its
envelope.
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