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The natural join and inner union of tables in relational databases can be algebraically
modeled as the meet and the join operations in a class of lattices, the class of relational lattices.
The connection between these lattices and databases is well illustrated in previous work on the
subject, see [8, 3]. We recall here only the mathematical definition of these lattices and discuss
some recent advances on their quasiequational and equational theories.

The set of functions from A to D—noted here DA—can be endowed with the structure of a
generalized ultrametric space where the distance takes values in the powerset algebra P (A), see
[5, 1]. Namely, define the distance between f, g ∈ DA by δ(f, g) := { a ∈ A | f(a) 6= f(g) }. A
subset X ⊆ DA is α-closed if δ(f, g) ⊆ α and g ∈ X implies f ∈ X; a pair (α,X) ∈ P (A)×DA

is closed if X is α-closed; the closed pairs form a Moore family on P (A)×P (DA). The relational
lattice R(D,A) is, up to isomorphism, the lattice of closed pairs of P (A)× P (DA).

It was proved in [3] that the quasiequantional theory of relational lattices, over the signature
which contains the lattices operations ∧,∨ as well as an additional constant H (the header
constant), is undecidable. We recently refined this result and proved that the quasiequational
theory of relational lattices, over the pure lattice signature, is undecidable, [6, 7]. We actually
proved there a stronger statement:

Theorem 1. It is undecidable whether a finite subdirectly irreducible lattice can be embedded
into a relational lattice.

The proof is a reduction from the coverability problem for S5 universal product frames, see
[2]. It also allows us to find a quasiequation that holds in all the finite R(E,A), but failing in
some infinite R(D,A), with A finite. A universal product frame is a special dependent product,
thus of the form

∏
a∈ADa; with the same definition as above, we can give to dependent products

the structure of a generalized ultrametric space. The reduction crucially relies on the following
statement, whose proof appears in [6].

Theorem 2. The spaces (
∏
a∈ADa, δ) are, up to isomorphism, the pairwise-complete and

spherically complete generalized ultrametric spaces.

Using a result from [1] these spaces are, up to isomorphism, the injective objects in the
category of generalized ultrametric spaces over P (A).

Coming back to the theories of relational lattices, a natural aim is to move from quasiequa-
tions to equations and to relate equational theories of infinite relational lattices to the equational
theories of the finite ones. Many informations can be deduced by analysing the functorial prop-
erties of the construction R( , ). For ψ : E −→ D, π : A −→ B, and (α,X) ∈ R(D,A), put

R(D,π)(α,X) := (∀π(α), π∗−1(X)) , R(ψ,A)(α,X) := (α,ψ−1∗ (X)) .

Here, for f ∈ DA, we have π∗(f) = f ◦ψ, ψ∗(f) = ψ ◦ f , and ∀π is right adjoint to π−1. Notice
that R(D,π) ◦ R(ψ,A) = R(ψ,A) ◦ R(D,π), so we can define R(ψ, π) := R(D,π) ◦ R(ψ,A).
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Proposition 3. The construction R( , ) is a functor from Setop× Set to cSL∧, the category of
complete meet-semilattices and maps preserving all meets.

For ψ and π as above, let `ψ : R(E,A) −→ R(D,A) be left adjoint to R(ψ,A) : R(D,A) →
R(E,A); let `π : R(D,B) −→ R(D,A) be left adjoint to R(D,π) : R(D,A) −→ R(D,B). The
following two observations are crucial.

Proposition 4. If E 6= ∅ and ψ : E −→ D is injective, then `ψ is injective and preserves all the
meets. If ψ : A −→ B is surjective, then `π is injective and preserves all the meets.

In particular, R(E,B) belongs to the variety generated by R(D,A) whenever E ⊆ D and
A ⊆ B. When all these sets are finite, it is possible to look at the combinatorial proprieties
the OD-graphs to assert that the two varieties are not equal, see [4]. Using Proposition 2, we
derive the following theorem, showing that, for equations, the situation is quite different from
the one of quasiequations.

Theorem 5. If A is finite, then R(D,A) belongs to the variety generated by all the finite
R(E,A).

Indeed, R(D,A) is an algebraic lattice, thus it is isomorphic to the ideal completion of the
join-semilattice of its compact elements. Yet, this join-semilattice is the colimit of the diagram
`ψE0,E1

where E0 ⊆ E1 ⊆ D, E0, E1 are non-empty and finite, and ψE0,E1
is the inclusion of

E0 into E1. In particular this colimit is a lattice in the variety generated by the finite R(E,A).
It is well known that the ideal completion of a lattice and the lattice satisfy same the same
identities.

If A is infinite, then R(D,A) is not an algebraic lattice, yet something can be said when D
is finite.

Theorem 6. If D is finite, then R(D,A) lies in the variety generated by all the finite R(D,B).

Let Partf(A) be the set of finite partitions of A, and consider the canonical maps πQ : A −→ Q
with Q ∈ Partf(A), as well as the maps πQ,P : Q −→ P , for Q,P ∈ Partf(A) such that Q refines
P , sending a block of Q to the block of P that contains it. The maps R(D,πQ) induce a canonical
map π : R(D,A) −→ limQ∈Partf(A) R(D,Q) in the category cSL∧, where limQ∈Partf(A) R(D,Q)
is the inverse limit of the maps R(D,πQ,P ). We argue that if D is finite, then π is injective
and preserves finite joins. Now, limQ∈Partf(A) R(D,Q) is an algebraic lattice, and the poset of
its compact element can be identified with the colimit (in the category of join-semilattices) of
the diagram `πQ,P

: R(D,P ) −→ R(D,Q), for Q,P ∈ Partf(A) and Q refines P . As before,
limQ∈Partf(A) R(D,Q) belongs to the variety generated by the R(D,Q), that are finite. As
R(D,A) embeds into limQ∈Partf(A) R(D,Q), then the same holds of R(D,A).

If bothD andA are infinite, then the canonical map π is not an embedding. The tools used to
prove Theorems 3 and 4 allow us to identify a complete lattice Rω—the limit limQ∈Partf(A) R(D,Q)—
which is a unique generator for the variety generated by the finite R(E,B). The quest for a
characterization of the equational theory of relational lattices might involve recognizing Rω as
a sublattice of R(D,A) and how equational properties extend from the smaller lattice to its
envelope.
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