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In his monograph [6], Hájek established theoretical basis for a wide family of fuzzy (thus, many-
valued) logics which, since then, has been significantly developed and further generalized, giving rise
to a discipline that has been named as Mathematical Fuzzy logic (MFL). Hájek’s approach consists in
fixing the real unit interval as standard domain to evaluate atomic formulas, while the evaluation of com-
pound sentences only depends on the chosen operation which provides the semantics for the so called
strong conjunction connective. His general approach to fuzzy logics is grounded on the observation that,
if strong conjunction is interpreted by a continuous t-norm [7], then any other connective of a logic has
a natural standard interpretation.

Among continuous t-norms, the so called Łukasiewicz, Gödel and product t-norms play a funda-
mental role. Indeed, Mostert-Shields’ Theorem [7] shows that a t-norm is continuous if and only if it
can be built from the previous three ones by the construction of ordinal sum. In other words, a t-norm
is continuous if and only if it is an ordinal sum of Łukasiewicz, Gödel and product t-norms. These
three operations determine three different algebraizable propositional logics (bringing the same names
as their associated t-norms), whose equivalent algebraic semantics are the varieties of MV, Gödel and
product algebras respectively.

Within the setting of MFL, states were first introduced by Mundici [8] as maps averaging the truth-
value in Łukasiewicz logic. In his work, states are functions mapping any MV-algebra A in the real
unit interval [0,1], satisfying a normalization condition and the additivity law. Such functions suitably
generalize the classical notion of finitely additive probability measures on Boolean algebras, besides
corresponding to convex combinations of valuations in Łukasiewicz propositional logic.

One of the most important results of MV-algebraic state theory is Kroupa-Panti theorem [9, §10], a
representation theorem showing that every state of an MV-algebra is the Lebesgue integral with respect
to a regular Borel probability measure. Moreover, the correspondence between states and regular Borel
probability measures is one-to-one.

Many attempts of defining states in different structures have been made (see for instance [5, §8] for
a short survey). In particular, in [2], the authors provide a definition of state for the Lindenbaum algebra
of Gödel logic that results in corresponding to the integration of the truth value functions induced by
Gödel formulas, with respect to Borel probability measures on the real unit cube [0,1]n. Moreover, such
states correspond to convex combinations of finitely many truth-value assignments.

The aim of this contribution is to introduce and study states for the Lindenbaum algebra of product
logic, the remaining fundamental many-valued logic for which such a notion is still lacking.

Recall that up to isomorphism (see [1, Theorem 3.2.5]) every element of the free n-generated product
algebra FP(n) is a product logic function, i.e. [0,1]-valued function defined on [0,1]n associated to a



product logic formula built over n propositional variables.

Definition 1. A state of FP(n) will be a map s : FP(n)→ [0,1] satisfying the following conditions:

S1. s(1) = 1 and s(0) = 0,

S2. s( f ∧g)+ s( f ∨g) = s( f )+ s(g),

S3. If f ≤ g, then s( f )≤ s(g),

S4. If f 6= 0, then s( f ) = 0 implies s(¬¬ f ) = 0.

By the previous definition, it follows that states of a free product algebra are lattice valuations
(axioms S1–S3) as introduced by Birkhoff in [3].

It is worth noticing that product logic functions in FP(n) are not continuous, unlike the case of
free MV-algebras, and the free n-generated product algebra is not finite, unlike the case of free Gödel
algebras. However, there is a finite partition of their domain in σ -locally compact subsets, depending on
the Boolean skeleton of FP(n), upon which the restriction of each product function is continuous. By
exploiting this fact, we are able to prove the following integral representation theorem, where we show
that our states interestingly represent an axiomatization of the Lebesgue integral as an operator acting
on product logic formulas.

Theorem 2 (Integral representation). For a [0,1]-valued map s on FP(n), the following are equivalent:

(i) s is a state,

(ii) there is a unique regular Borel probability measure µ such that, for every f ∈FP(n),

s( f ) =
∫
[0,1]n

f dµ.

Moreover, and quite surprisingly since in the axiomatization of states the product t-norm operation is
only indirectly involved via a condition concerning double negation, we prove that every state belongs
to the convex closure of product logic valuations. Indeed, in particular, extremal states will result to
correspond to the homomorphisms of FP(n) into [0,1], that is to say, to the valuations of the logic.
Indeed, let δ : S (n)→M (n) be the map that associates to every state its corresponding measure via
Theorem 2.

Theorem 3. The following are equivalent for a state s : FP(n)→ [0,1]

1. s is extremal;

2. δ (s) is a Dirac measure;

3. s is a product homomorphism.

Thus, since the state space S (n) is a convex subset of [0,1]FP(n), via Krein-Milman Theorem we
obtain the following:

Corollary 4. For every n ∈ N, the state space S (n) is the convex closure of the set of product homo-
morphisms from FP(n) into [0,1].
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