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1 Introduction

Sussman and Subrahmayam proved in [8] and [7] that a certain kind of reduced ring (called
m-domain ring in [7]) can be decomposed into a collection of disjoint subsets which are closed
with respect to multiplication. In [6] it is shown that reduced Rickart rings and m-domain
rings are the same thing. This talk is about the order structure of a reduced Rickart ring’s
decomposition into disjoint semigroups.

Crrulis proved in [3] that every right normal skew nearlattice can be regarded as a structure
called strong semilattice of semigroups, and in [5] he shows that any reduced Rickart ring
admits a structure of right normal skew nearlattice. It turns out that this strong semilattice of
semigroups arises from the semigroup decomposition of [7].

1.1 Reduced Rickart rings

A ring is called reduced if it has no nonzero nilpotent elements. It can be easily checked that
for all elements x,y of a reduced ring R, xy = 0 if and only if yx = 0.

The Abian partial order on a reduced ring is defined as x < y if and only if xy = zx. It was
proved in [2] that this relation on an arbitrary ring is a partial order if and only if the ring is
reduced.

Definition 1.1. [I] A unitary ring R is called a right Rickart ring iff for every a € R there is
an idempotent e € R such that, for all xz € R,

axr=0 iff ex=ux.

Dually, it is called left Rickart iff for every a € R there is an idempotent f € R such that, for
allz € R, za =0 iff of = x. A Rickart ring is a ring wich is both right and left Rickart.

In a reduced (right or left) Rickart ring R the idempotents e and f from Definition 1.1 are
unique and coincide.

1.2 Skew nearlattices

A meet-semilattice is called nearlattice if it is finitely bounded complete (i.e., whenever a
finite subset has an upper bound, it also has a least upper bound). Skew nearlattices are
a generalization of nearlattices. Instead of a meet operation they have an associative and
idempotent operation that might not be commutative.

Definition 1.2 ([4, 5]). Let S be a finitely bounded complete poset and let V denote its join
operation. If x is an associative operation on S such that, for all z,y € S, zVy = y if and only
if © xy = x, then the partial algebra (S, *, V) is called a (right) skew nearlattice (see [4]).



For any skew nearlattice (S, *, V), the reduct (S, *) obviously is a band (i.e., an idempotent
semigroup). A band (S, ) is called singular iff zxy =y for all z,y € S ([3]). A skew nearlattice
is called singular if the underlying band is singular.

Example 1.3. It was proved in [5] that, given a reduced Rickart ring R equipped with an
operation anNb = a''b, the partial algebra <R, v, ?> is a skew nearlattice (V denotes the join

with respect to the natural order of the semigroup <R7 <X>, which coincides with the Abian

order). The operation ‘A is therefore called skew meet.

Definition 1.4 ([4]). Let T be a meet-semilattice and let {As | s € T} be a family of disjoint
semigroups such that, for all s,t € T, the inequality s < ¢t implies that there is a semigroup
homomorphism ff: A; — A, such that the homomorphisms f/ are the identity maps, and for
all r,s,t €T, if r <s<t, then flfs = fL.

On the union 4 = (J,.p
y € Ay, and - denotes the multiplication of the semigroup Agn¢, then xﬁy =[5, (@) flo(y).

Then we call the algebra <A, ﬁ> a strong semilattice of the semigroups {As}

A of all the semigroups we define an operation N Ifze Ag and

seT"

2 Skew nearlattices in a reduced Rickart ring

Let U be the set of non-zero-divisors of a reduced Rickart ring R. As shown in [6], we can
apply the results on m-domain rings from [7] to R. Therefore we know that the ring R can be
decomposed into semigroups of the form Ue (with the usual ring multiplication), where e is an
idempotent. Then the set Ue equipped with the skew meet operation <K, the corresponding
partial join operation V and the ring multiplication - forms a multiplicative singular skew

nearlattice <Ue, Vv, W, > (i.e., <Ue, Vv, ?> is a singular skew nearlattice and (Ue, -) is a monoid).

If the semigroups of a strong semilattice of semigroups happen to be multiplicative skew
nearlattices and the corresponding semigroup homomorphisms are actually homomorphisms of
multiplicative skew nearlattices, then we call this a strong semilattice of multiplicative skew
nearlattices. Now the whole ring admits such a structure:

Theorem 2.1. If R is a reduced Rickart ring whose skew meet operation is denoted by 7,

and - is the ring multiplication, then <R, <K, > s a strong semilattice of the multiplicative skew

nearlattices <Ue7 v, 7, >

There arises the question how much of the structure of a reduced Rickart ring can be
"reconstructed” from its strong semilattice of multiplicative skew nearlattices. Given a strong
semilattice of multiplicative skew nearlattices that satisfies some additional conditions, we can
define a binary operation and constants 0 and 1 on the union of the skew nearlattices such that
the resulting algebra is a reduced Baer semigroup, i.e., a reduced semigroup with zero such
that, for every a € S, there are idempotents e, f € S such that ax = 0 if and only if ex = =,
and za = 0 if and only if zf = . A Baer semigroup is what is left of a Rickart ring if we
“forget” about the addition.

Furthermore, the skew nearlattice of Example 1.3 can be shown to be isomorphic to a skew
nearlattice of partial functions.
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