Effect algebras as colimits of finite Boolean algebras *

Gejza Jenča

Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology,Bratislava, Slovak Republic, gejza.jenca@stuba.sk

Effect algebras [1] are positive, cancellative, unital partial abelian monoids. The category of effect algebras is denoted by **EA**.

Let us denote the initial segment of natural numbers $\{1, \ldots, n\}$ by [n]. Note that $[0] = \emptyset$. Let **FinBool** be the full subcategory of the category **FinBool** of Boolean algebras spanned by the set of objects $\{2^{[n]}: n \in \mathbb{N}\}$. **FinBool** is a small, full subcategory of the category of effect algebras.

It was proved by Staton and Uijlen in [6] that every effect algebra A can be faithfully represented by a presheaf P(A) on the category **FinBool**. Explicitly, for an effect algebra A the presheaf P(A) : **FinBool** \rightarrow **Set** maps every object $2^{[n]}$ to the homset $\mathbf{EA}(2^{[n]}, A)$ and every arrow $f : 2^{[n]} \rightarrow 2^{[m]}$ the mapping $P(A)(f) : P(2^{[m]}) \rightarrow P(2^{[n]})$ defined as the precomposition by f. This determines a functor $P : \mathbf{EA} \rightarrow [\mathbf{FinBool}^{op}, \mathbf{Set}]$.

The category of tests of an effect algebra A is the category of elements of the presheaf P(A), in symbols el(P(A)). We note that every object of el(P(A)) is just a morphism of effect algebras $g: 2^{[n]} \to A$ (a finite observable) and these are in a one-to-one correspondence with finite sequences $(a_i)_{i \in [n]} \subseteq A$ with $\sum_{i \in [n]} a_i = 1$, that are called tests [2, 3]. The morphisms then correspond to refinements of tests.

It is clear that for every effect algebra A, there is a functor $D_A : el(P(A)) \to \mathbf{EA}$ that maps every $g : 2^{[n]} \to A$ to its domain $2^{[n]}$. As proved in [6], **FinBool** is a dense subcategory of **EA**. This implies that every effect algebra A is a colimit of its D_A . Moreover, since **EA** is cocomplete [4], we may apply a general argument [5, Theorem I.5.2] to prove that there is a reflection [**FinBool**^{op}, **Set**] \to **EA** left adjoint to P.

Recall, that an effect algebra satisfies the *Riesz decomposition property* (abbreviated by RDP) if and only if, for all u, v_1, v_2 such that $u \leq v_1 + v_2$ there are u_1, u_2 such that $u = u_1 + u_2$, $u_1 \leq v_1, u_2 \leq v_2$. Every Boolean algebra and every effect algebra arising from an MV-algebra satisfies the RDP.

Theorem 1. An effect algebra A satisfies the RDP if and only if every span in el(P(A)) can be extended to a commutative square.

Recall, that an effect algebra is an *orthoalgebra* if and only if, for every element a, the existence of a + a implies that a = 0.

Theorem 2. An effect algebra is an orthoalgebra if and only if for every parallel pair of morphisms in $f_1, f_2 : g \to g'$ in el(P(A)) there is a coequalizing morphism $q : g' \to h$ such that $q \circ f_1 = q \circ f_2$.

Theorem 3. An effect algebra A is a Boolean algebra if and only if el(P(A)) is filtered.

Let A be an effect algebra. For every Boolean algebra B, a morphism $f: B \to A$ gives rise to a morphism $el(P(f)): el(P(B)) \to el(P(A))$ in **Cat**. Since el(P(B)) is filtered, every such f gives rise to an *ind-object* of the category el(P(A)).

^{*}This research is supported by grants VEGA 2/0069/16, 1/0420/15, Slovakia and by the Slovak Research and Development Agency under the contract APVV-14-0013.

References

- Foulis, D., Bennett, M.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)
- [2] Foulis, D., Randall, C.: Operational quantum statistics. I. Basic concepts. J. Math. Phys. 13, 1667–1675 (1972)
- [3] Gudder, S.: Effect test spaces. Intern. J. Theor. Phys. 36, 2681–2705 (1997)
- [4] Jacobs, B., Mandemaker, J.: Coreflections in algebraic quantum logic. Foundations of physics 42(7), 932–958 (2012)
- [5] MacLane, S., Moerdijk, I.: Sheaves in geometry and logic: A first introduction to topos theory. Springer Science & Business Media (2012)
- [6] Staton, S., Uijlen, S.: Effect algebras, presheaves, non-locality and contextuality. In: International Colloquium on Automata, Languages, and Programming, pp. 401–413. Springer (2015)