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1 Introduction

The rudiments for the development of the model theory of predicate core fuzzy logics were laid
down in [5] with follow up work in places like [3, 2, 4]. A great deal still remains to be done,
though. The aim of this talk is to explore the construction of models realizing many and few
types in the setting of these logics as well as applications. This kind of problems are well-known
from the classical case (cf.[1, 6]).

2 Quick preliminaries

We more or less follow the notation of [3] below. In particular, recall that we write models
for our (function symbol-free) predicate language L as structures of the form (B,M) where B
is an algebra belonging to some variety (which is an extension of the variety of the so called
MTL-algebras) corresponding to the logic under consideration and M is a structure with a
domain M and appropriate assignments of truth values to the predicates of the language and
of individuals of M to its constants. We write (B,M) |= φ when ||φ||BM = 1.

Moreover, we are only interested in models where: ||∃xφ(x)||BM = 1 means that ||φ[d]||BM = 1
for some element d of its domain of individuals (call them ∃-Henkin models). Henceforth, by a
model we will always mean one such model.

A tableau is going to be a pair (T,U) such that T and U are theories. A tableau is satisfied
by a model (B,M), if we have that both (B,M) |= T and, for all φ ∈ U , (B,M) 6|= φ. We may
define the expression (T,U) |= φ as meaning that for any model that satisfies (T,U), the model
must make φ true as well. A tableau (T,U) is said to be consistent if T `

∨
U0 for no finite

U0 ⊆ U . In particular,
∨
∅ we define as ⊥ (semantically, of course, ⊥ is the l. u. b. of ∅).

The following result is what we need for our purposes here instead of Theorem 4 from [5].

Theorem 1. (Model Existence Theorem) Let (T,U) be a consistent tableau. Then there is a
model satisfying (T,U).

Corollary 1. (Tableaux Compactness) Let (T,U) be a tableau. If every (T0, U0), with |T0|, |U0|
finite and T0 ⊆ T and U0 ⊆ U , has a model satisfying it, then (T,U) is satisfied in some model.

3 Models realizing many types

Let (B,M) be a model. If (p, p′) is a tableau in some variable x and parameters in some
A ⊆M , we will call p a type of (B,M) in A if the tableaux (ThA(B,M) ∪ p,ThA(B,M) ∪ p′)
is satisfiable −where ThA(B,M) is the collection of formulas with constants for the elements
in A that hold in (B,M). We will denote the set of all such types by S(B,M)(A). A model



(B,M) is κ-saturated if for any A ⊆ M suh that |A| < κ, all (p, p′) ∈ S(B,M)(A) are realized
in (B,M).

Theorem 2. For any (B,M) there is a κ+-saturated L-elementary extension (in the sense of
[5, 3]) (C,N) of (B,M).

4 Models realizing few types

A pair of sets of formulas (p, p′) is a type of a tableau (T,U) if the tableau (T ∪ p, U ∪ p′) is
satisfiable.

A type (p, p′) of (T,U) is non-isolated if for any formulas φ, φ′ such that (T ∪{φ}, U ∪{φ′})
is satisfiable, there are ψ ∈ p, ψ′ ∈ p′ such that (T ∪{φ}, U ∪{φ′}) 2 ψ or (T ∪{φ, ψ′}, U ∪{φ′})
is satisfiable.

Theorem 3. (Omitting types) Let (T,U) be a tableau realized by some model and (p, p′) a
non-isolated n-type of (T,U). Then there is model satisfying (T,U) which omits (p, p′).

Theorem 4. (Omitting countably many types) Let (T,U) be a tableau realized by some model
and (pi, p

′
i)(i < ω) a sequence of non-isolated n-types of (T,U). Then there is model satisfying

(T,U) which omits (pi, p
′
i)(i < ω).

These omitting types results differ from those in [7] since we are working with tableaux
rather than simply theories.

5 Applications

Now we finish with an example of an application of the countable omitting types theorem.

Proposition 1. Suppose we have binary symbols in our language < and R. Let (B,M) be a
countable model of the theory (Γ,∆) where

Γ = {∀x, y(x < y ∨R(x, y) ∨ y < x)} ∪ {∀x, y, z(R(x, y) ∧R(yz)→ R(x, z))} ∪ {∀z(∀x∃y >
x∃v < z(ψ(v, y))→ ∃v < z∀x∃y > x(ψ(v, y)))} ∪ {∀x0, . . . xn∃y(

∧
i≤n xi < y) : n < ω}

and

∆ = ∅

Then there is an L-elementary extension (A,N) of (B,M), such that if b ∈ N \M is such that
R(b, c) does not hold in (A,N) for any c ∈ M , then, given a ∈ M , a < b must hold in (A,N)
(this model might be called an end extension of (B,M) relative to R).
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