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This paper introduce the notion of topologizing filters on rings of fractions RS™! for a multi-
plicative subset S of a commutative ring R. It is shown that the mapping from IdR to IdRS™!
given by I — IS~! induces a map from FilR to FilRS~!. It is proved that for a multiplicative
subset S of a commutative ring R the map ¢g : [Fil R]% — [FilRS™]% given by

def

¢s(§) = {AS1: AeF}
is an onto homomorphism of lattice ordered monoids. It is proved that for a multiplicative subset
S of a commutative ring R, if the monoid operation on FilR is commutative so is the monoid
operation on FilRS™! and if every member of FilR is idempotent then the same is true of every
member of FilRS~!. Moreover, such a map (g gives rise to a canonical congruence relation =5
on FilR defined by § =5 & < ¢5(F) = ¢5(8). The above result tells us that the homomorphism
$s ¢ [FilR]% — [FilRS~1)% restricts to a homomorphism from the Jansian topologizing filters of
FilR onto the Jansian topologizing filters of FilRS™!.

It is proved that for a commutative ring R for which FilR is commutative, then ({=g, : P €
Specy, R} is the identity congruence on FilR, that is, for all §, & € FilR,

F=6&F=4,, & VP € Specy, R.

As one of the main results of this paper it is shown that if R is a commutative ring for which
FilR is commutative, then the previous result yields the following subdirect decomposition:

[FilR]d“%[FilR]d“/(ﬂPespecmR E@SP)<—> [ (Far™/ =)= T[] [FiRe™
PeSpec, R PeSpec R

For an arbitrary ring R for which [Fil Rg]" is two-sided residuated, it is shown that R satisfies
the DCC on left annihilator ideals, and the ACC on right annihilator ideals. It is well-known that a
commutative noetherian ring has finitely many minimal prime ideals and as an extension of this, it
is proved that if R is an arbitrary ring for which [Fil R]%* is two-sided residuated, then R contains
finitely many minimal prime ideals. It is also shown that for a Priifer domain R for which Fil R
is commutative, Rp is a (noetherian) rank 1 discrete valuation domain for every maximal ideal P
of R.

This paper is concluded by proving that for a Priifer domain R, FilR is commutative if and
only if R is noetherian and thus a Dedekind domain which extends a known result which says that
a valuation domian for which FilR is commutative is noetherian and thus rank 1 discrete.
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