Analogies between small scale topology and large scale topology from the nonstandard perspective

Takuma Imamura

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan timamura@kurims.kyoto-u.ac.jp

Large scale topology is the study of the large scale (asymptotic) behaviour of various spaces. It is well-known that there are many analogies between small scale topology and large scale topology. Our contribution is to study these analogies in the light of nonstandard analysis.

Let \mathbb{U} be a transitive universe that satisfies sufficiently many axioms of ZFC and has all standard objects we need. We fix an enlargement $*: \mathbb{U} \hookrightarrow {}^*\mathbb{U}$ of \mathbb{U} . A formula is said to be Π_1^{st} if it is of the form $\forall x \in \mathbb{U}.\varphi(x,\vec{a})$, where φ is a \in -formula and \vec{a} is parameters from \mathbb{U} . A formula is said to be Σ_1^{st} if it is of the form $\exists x \in \mathbb{U}.\varphi(x,\vec{a})$, where φ and \vec{a} are the same as above.

Let X be a topological space with a topology \mathcal{O}_X . The monad of $x \in X$ is the Π_1^{st} -set $\mu_X(x) := \bigcap_{x \in U \in \mathcal{O}_X} {}^*U$. The monad map $\mu_X \colon X \to \mathcal{P}({}^*X)$ uniquely determines the topology \mathcal{O}_X . Next, let X be a uniform space with a uniformity \mathcal{U}_X . The infinite closeness relation on *X is the Π_1^{st} -equivalence relation defined by $\approx_X := \bigcap_{E \in \mathcal{U}_X} {}^*E$. Like topological spaces, the infinite closeness relation \approx_X uniquely determines the uniformity \mathcal{U}_X ([1]). Thus we can consider small scale topology as the study of Π_1^{st} -sets.

Let X be a bornological space with a bornology \mathcal{B}_X . In our setting, a bornology on X is defined to be a nonempty cover of X that is closed under taking subsets and finite nondisjoint unions. Bornology is a minimal framework in which we can discuss boundedness. For more details, see Hogbe-Nlend [2]. The galaxy of $x \in X$ is defined as the Σ_1^{st} -set $G_X(x) := \bigcup_{x \in B \in \mathcal{B}_X} {}^*B$. We show that the galaxy map $G_X \colon X \to \mathcal{P}({}^*X)$ uniquely determines the bornology \mathcal{B}_X . Next, let X be a coarse space with a coarse structure \mathcal{E}_X . The finite closeness relation on *X is defined as the Σ_1^{st} -equivalence relation $\sim_X := \bigcup_{E \in \mathcal{E}_X} {}^*E$. We show that the finite closeness relation \sim_X uniquely determines the coarse structure \mathcal{E}_X . Similarly to small scale, we can think of large scale topology as the study of Σ_1^{st} -sets. In this sense, large scale topology is the logical dual of small scale topology.

Many small scale concepts topology have nonstandard characterisations in terms of monad and infinite closeness (see Robinson [3] and Stroyan and Luxemburg [4]). For example,

- a map $f: X \to Y$ between topological spaces is continuous at $x \in X$ if and only if ${}^*f(\mu_X(x)) \subseteq \mu_Y(f(x));$
- a map $f: X \to Y$ between uniform spaces is uniformly continuous if and only if for every $x, y \in {}^*X$, if $x \approx_X y$, then ${}^*f(x) \approx_Y {}^*f(y)$;
- a family \mathcal{F} of maps between uniform spaces X, Y is uniformly equicontinuous if and only if for any $f \in {}^*\mathcal{F}$ and $x, y \in {}^*X$, if $x \approx_X y$, then $f(x) \approx_Y f(y)$.

As the large scale analogues, we obtain the following nonstandard characterisations of large scale concepts in terms of galaxy and finite closeness:

• a map $f: X \to Y$ between bornological spaces is bornological at $x \in X$ if and only if ${}^*f(G_X(x)) \subseteq G_Y(f(x))$;

- a map $f: X \to Y$ between coarse spaces is bornologous if and only if for every $x, y \in {}^*X$, if $x \sim_X y$, then ${}^*f(x) \sim_Y {}^*f(y)$;
- a family \mathcal{F} of maps between coarse spaces X,Y is uniformly equibounded if and only if for any $f \in {}^*\mathcal{F}$ and $x,y \in {}^*X$, if $x \sim_X y$, then $f(x) \sim_Y f(y)$.

References

- [1] D. G. Coyle and M. E. Szabo. Monadic properties of uniformities. *Proceedings of the American Mathematical Society*, 89(2):346–350, 1983.
- [2] Henri Hogbe-Nlend. Bornologies and Functional Analysis. North-Holland, 1977.
- [3] Abraham Robinson. Non-standard Analysis. North-Holland, 1966.
- [4] K. D. Stroyan and W. A. J. Luxemburg. Introduction to The Theory of Infinitesimals. Academic Press, 1976.