An Ordering Condition for Groups

Almudena Colacito and George Metcalfe^{*}

Mathematical Institute, University of Bern, Switzerland {almudena.colacito,george.metcalfe}@math.unibe.ch

Ordering conditions for groups provide useful tools for the study of various relationships between group theory, universal algebra, and topology (see, e.g., [2, 4, 3, 1]). In this work, we establish a new "algorithmic" ordering condition for extending partial orders on groups to total orders. We then use this condition to show that the problem of extending a finite subset of a free group to a total order corresponds to the problem of checking validity of a certain inequation in the variety of representable lattice-ordered groups (or, equivalently, the class of totally ordered groups). As a direct consequence, we obtain a new proof that free groups are orderable.

Let us fix a group $\mathbf{G} = \langle G, \cdot, {}^{-1}, e \rangle$. Recall that a *partial order* of \mathbf{G} is a partial order \leq on G satisfying also for $a, b, c, d \in G$,

$$a \leq b \implies cad \leq cbd.$$

Its positive cone $P_{\leq} = \{a \in G : e < a\}$ is a normal subsemigroup of **G** (a subset of *G* closed under \cdot and conjugation by elements of *G*) that omits *e*. Conversely, if *P* is a normal subsemigroup of **G** omitting *e*, then **G** is partially ordered by

$$a \leq^P b \iff ba^{-1} \in P \cup \{e\}.$$

Hence partial orders of **G** can be identified with normal subsemigroups of **G** not containing *e*. For $S \subseteq G$, the normal subsemigroup of **G** generated by *S*, denoted by $\langle \langle S \rangle \rangle$, is a partial order of **G** if and only if $e \notin \langle \langle S \rangle \rangle$. A partial order \leq of **G** is a *(total)* order if $G = P_{\leq} \cup P_{\leq}^{-1} \cup \{e\}$.

Now, for finite subsets $S \subseteq G$, we define a relation $\vdash_{\mathbf{G}} S$ inductively by the clauses

- (i) $\vdash_{\mathbf{G}} S \cup \{a, a^{-1}\};$
- (ii) $\vdash_{\mathbf{G}} S \cup \{ab\}$, whenever $\vdash_{\mathbf{G}} S \cup \{a\}$ and $\vdash_{\mathbf{G}} S \cup \{b\}$;
- (iii) $\vdash_{\mathbf{G}} S \cup \{ab\}$, whenever $\vdash_{\mathbf{G}} S \cup \{ba\}$.

The following theorem describes our new condition for extending a finite subset of \mathbf{G} to an order, noting that the equivalence of (1) and (2) is a reformulation of an ordering theorem for groups due to Fuchs [2].

Theorem 1. The following are equivalent for a finite $S \subseteq G$:

- (1) S does not extend to a total order of \mathbf{G} .
- (2) There exist $a_1, \ldots, a_m \in G \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$,

$$e \in \langle \langle S \cup \{a_1^{\delta_1}, \dots, a_m^{\delta_m}\} \rangle \rangle.$$

(3) $\vdash_{\mathbf{G}} S$.

^{*}Supported by Swiss National Science Foundation grant 200021_165850.

We now consider a non-trivial free group \mathbf{F} , which may be viewed as an algebra of reduced group terms obtained by cancelling all the occurrences of xx^{-1} and $x^{-1}x$. For convenience, we deliberately confuse group terms t with their counterparts in \mathbf{F} . We consider also the variety \mathcal{RG} of representable lattice-ordered groups (in an algebraic language with operations $\wedge, \vee, \cdot, \cdot^{-1}, e$) generated by the class of totally ordered groups. Using Theorem 1, we then obtain the following correspondence between extending a finite subset of \mathbf{F} to an order and the validity of a corresponding inequation in \mathcal{RG} .

Theorem 2. The following are equivalent for any $t_1, \ldots, t_n \in F$:

- (1) $\{t_1, \ldots, t_n\}$ does not extend to a total order of **F**.
- $(2) \vdash_{\mathbf{F}} \{t_1, \ldots, t_n\}.$
- (3) $\mathcal{RG} \models e \leq t_1 \vee \ldots \vee t_n$.

This result is then used to obtain a new proof of the orderability of free groups, first proved in [5]. In fact, it is sufficient to observe that $\mathcal{RG} \not\models e \leq x$ for any generator x, and hence, by Theorem 2, there exists an order of \mathbf{F} where x is positive.

References

- [1] A. Clay and D. Rolfsen. Ordered Groups and Topology. American Mathematical Society, 2016.
- [2] L. Fuchs. Partially Ordered Algebraic Systems. Pergamon Press, 1963.
- [3] N. Galatos and G. Metcalfe. Proof theory for lattice-ordered groups. Ann. Pure Appl. Logic, 8(167):707-724, 2016.
- [4] V. M. Kopytov and N. Y. Medvedev. The theory of lattice-ordered groups. Kluwer, 1994.
- [5] B. H. Neumann. On ordered groups. Amer. J. Math., 71(1):1-18, 1949.