Multiplicative derivations of commutative residuated lattices

Michiro Kondo*
Tokyo Denki University, Tokyo, Japan
mkondo@mail.dendai.ac.jp

1 Introduction

For a theory of algebras with two operations + and \cdot, we have an interesting method, derivations, to develop the structure theory, as an analogy of derivations of analysis. The notion of derivation of algebras was firstly applied to the theory of ring ([4]), and after that it was also applied to other algebras, such as lattices $([2,6])$ and MV-algebras ($[1,7]$). We here aplied the derivation theory to the (commutative) residuated lattices which are very basic algebtras corresponding to fuzzy logic. For a residuated lattice L, a map $d: L \rightarrow L$ is called a derivation in [3] if it satisfies the condition: For all $x, y \in L$,

$$
d(x \odot y)=(d x \odot y) \vee(x \odot d y)
$$

Let L be a commutative residuated lattice and d be a good ideal derivation and F a d-filter of L, which are defined later. We show that
(1) The set $\operatorname{Fix}_{\mathrm{d}}(L)$ of all fixed points of d forms a residuated lattice and $L / \operatorname{ker} d \cong$ $\operatorname{Fix}_{\mathrm{d}}(L)$.
(2) A map $d / F: L / F \rightarrow L / F$ defined by $(d / F)(x / F)=d x / F$ is also a good ideal derivation of L / F.
(3) The quotient residuated lattices $\mathrm{Fix}_{\mathrm{d} / \mathrm{F}}(L / F)$ and $\mathrm{Fix}_{\mathrm{d}}(L) / d(F)$ are isomorphic, namely,

$$
\operatorname{Fix}_{\mathrm{d} / \mathrm{F}}(L / F) \cong \operatorname{Fix}_{\mathrm{d}}(L) / d(F)
$$

2 Derivations of residuated lattices

Let $L=(L, \wedge$, vee $, \rightarrow 0,1)$ be a (commutative) residuated lattice and $B(L)$ be the set of all complemented elements of L. We define derivations of residuated lattices according to [3]. A $\operatorname{map} d: L \rightarrow L$ is called a multiplicative derivation (or simply derivation) of L if it satisfies the condition

$$
d(x \wedge y)=(d x \odot y) \vee(x \odot d y) \quad(\forall x, y \in L)
$$

A derivation d is called ideal if $x \leq y$ then $d x \leq d y$ and $d x \leq x$ for all $x, y \in L$. Moreover, a derivation d is said to be good if $d 1 \in B(L)$.

Theorem 1 ([3]). Let d be a derivation of L and $d 1 \in B(L)$. Then the following are equivalent: for all $x, y \in L$,

[^0](1) d is an ideal derivation;
(2) $d x \leq d 1$;
(3) $d x=x \odot d 1$;
(4) $d(x \wedge y)=d x \wedge d y$;
(5) $d(x \vee y)=d x \vee d y$;
(6) $d(x \odot y)=d x \odot d y$.

For a derivation d of L, we consider a subset $\operatorname{Fix}_{\mathrm{d}}(L)=\{x \in L \mid d x=x\}$ of the set of all fixed elements of L for d.

Proposition 1. For a good ideal derivation d, we have $\operatorname{Fix}_{\mathrm{d}}(L)=d(L)$.
We have
Theorem 2. $\operatorname{Fix}_{\mathrm{d}}(L)=\left(\operatorname{Fix}_{\mathrm{d}}(L), \wedge, \vee, \odot, \mapsto, 0, d 1\right)$ is a residuated lattice, where operations on $\mathrm{Fix}_{\mathrm{d}}(L)$ are defined as follows:

$$
\left.\begin{array}{rlrl}
d x \wedge d y & =d(x \wedge y) & d x \vee d y & =d(x \vee y) \\
d x \odot d y & =d(x \odot y) & d x & \mapsto d y
\end{array}\right)=d(d x \rightarrow d y)
$$

A filter F is called a d-filter if $x \in F$ implies $d x \in F$ for all $x \in L$. It is easy to show that a quotient structure L / F is also a residuated lattice for a filter F. Moreover, we have the following.

Proposition 2. Let d be a good ideal derivation and F be a d-filter of L. A map $d / F: L / F \rightarrow$ L / F defined by $(d / F)(x / F)=d x / F$ for all $x / F \in L / F$ is a good ideal derivation of L / F.

Therefore, the quotient structure $(d / F)(L / F)=\operatorname{Fix}_{\mathrm{d} / \mathrm{F}}(L / F)$ is a residuated lattice. Since F is a d-filter of $L, d(F)$ is also a filter of $d(L)$ and thus $d(L) / d(F)$ forms a residuated lattice. It is natural to ask what the relation between two residuated lattices $(d / F)(L / F)$ and $d(L) / d(F)$ is. Next result is an answer.

Theorem 3. Let d be a good ideal derivation and F be a d-filter of L. Then we have $(d / F)(L / F)=\operatorname{Fix}_{\mathrm{d} / \mathrm{F}}(L / F)$ is isomorphic to $d(L) / d(F)$, that is,

$$
(d / F)(L / F)=\operatorname{Fix}_{\mathrm{d} / \mathrm{F}}(L / F) \cong d(L) / d(F)
$$

References

[1] N. O. Alshehri, Derivations of MV-algebras, Int. J. Mathematics and Math. Sciences vol. 2010 (2010), Article ID 312027, 7 pages.
[2] L. Ferrari, On derivations of lattices, Pure Mathematics and Applications vol. 12 (2001), 365-382.
[3] P. He, X. Xin and J. Zhan, On derivations and their fixed point sets in residuated lattices, Fuzzy Sets and Systems, vol. 303 (2016), 97-113.
[4] E. Posner, Derivations in prime rings, Proc. Am. Math. Soc. vol. 8 (1957), 1093-1100.
[5] G. Szász, Derivations of lattices, Acta Sci. Math. (Szeged) vol. 37 (1975), 149-154.
[6] X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Information Sciences vol. 178 (2008), 307-316.
[7] H. Yazarli, A note on derivations in MV-algebras, Miskolc Mathematical Notes vol. 14 (2013), 345354.

[^0]: *This work was partly supported by JSPS KAKENHI Grant Number 15K00024

