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There are two categorical approaches to the unification of the dualities between various kinds
of algebraic structures and of topological structures. The present study investigates how these
essentially different approaches are related, and applies the presented results to the categories
of certain types of universal algebras (including infinitary operations).

1 Introduction

Duality of algebraic structures (e.g., Boolean algebras, distributive lattices and Heyting al-
gebras) with topological structures (e.g., Stone spaces, Priestly spaces and Heyting spaces)
has been a major issue in topology, algebra and logic [1, 2, 6, 8]. There are two general and
categorical approaches [2, 8] to the duality issue: The first approach operates with concrete
categories C and D over the category Set of sets and functions. Schizophrenic object is the

key concept of this approach [8] defined as a triple
(
C̃, s, D̃

)
provided that C̃ is a C-object, D̃

is a D-object, s is a bijective function from the underlying set of C̃ to the underlying set of D̃,
and two additional conditions are satisfied. Such a schizophrenic object determines an adjoint
situation

(γ, α) : S a T : Cop → D. (1)

If we consider the full subcategory Fix (α) of C with those C-objects A for which the Ath
component αA of α is an isomorphism in Cop, and similarly, the full subcategory Fix (γ) of
D with respect to γ, then the adjoint situation (1) restricts to a duality between Fix (α) and
Fix (γ), which is the main result of the first approach describing many existing dualities, e.g.,
Stone, Priestley and localic dualities.

In the second approach [2], C is taken as an abstract category, which is not necessarily
a concrete category over Set. As a formulation of fixed-basis fuzzy topological spaces in the
category C with set-indexed products, C-M-L-spaces are defined in this approach to be pairs(
X, τ

m→ LX
)

consisting of a setX and anM-morphism τ
m→ LX ∈M, where L is an arbitrarily

fixed object of C, LX is an Xth power of L and M is a class of C-monomorphisms.
C-M-L-spaces and C-M-L-continuous functions form a category C-M-L-Top, which, un-

der the assumption of C being essentially (E ,M)-structured, relates to C with the adjoint
situation

(η, ε) : LΩM a LPtM : Cop → C-M-L-Top.

This adjoint situation gives rise to a duality between the full subcategory SPA(C) of C with
L-spatial objects and the full subcategory SOBTop(C) of C-M-L-Top with L-sober objects,
where L-spatiality of a C-object A means εA ∈ Iso (Cop) and L-sobriety of a C-M-L-space W
refers to ηW ∈ Iso (C-M-L-Top). The equivalence SPA(C)

op ∼SOBTop(C) is the central
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result of the second approach, named as “Fundamental Categorical Duality Theorem”, and
produces many existing and new dualities [2, 3, 4, 5].

2 Relations Between Two Approaches

As a comparison of the two approaches, the former one is more familiar, and has been utilized
by several authors [1, 6, 7], while the latter one has been used only by this author. Although
the two approaches are primarily different from each other, we aim in this study to ascertain
how they are interrelated. We will particularly show that for categories C and D with the
properties fulfilling the requirements in both approaches, there exists an adjunction

S∗ a T ∗ : SOBTop (C)→ D,

and be interested in the situation whenever this adjunction turns into an equivalence. We also
wish to give applications of the presented results to the categories of certain types of universal
algebras (possibly with infinitary operations), e.g., the category of sup-lattices with morphisms
all sup-preserving maps [9].
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