Projective WS5-Algebras

Alex Citkin

Metropolitan Telecommunications, New York, NY, USA
acitkin@gmail.com

The logic WS5 plays an important role in extending Glivenko’s Theorem to MIPC (see [2]). The algebraic models for WS5 are monadic Heyting algebras in which the open elements form a Boolean algebra. We study the variety \(\mathcal{M} \) of such algebras from the standpoint of projectivity. We give a description of \(F_{\mathcal{M}}(1) \), and we prove a criterion of projectivity of finitely-presented algebra from any of subvarieties of \(\mathcal{M} \).

Free Single-Generated Algebra

An algebra \(\langle A; \land, \lor, \to, 0, 1, \square \rangle \), where \(\langle A; \land, \lor, \to, 0, 1 \rangle \) is a Heyting algebra and \(\square \) satisfies the following identities:

\[
\begin{align*}
(M0) \quad & \square 1 \approx 1; \\
(M1) \quad & \square x \to x \approx 1; \\
(M2) \quad & \square(x \to y) \to (\square x \to \square y) \approx 1; \\
(M3) \quad & \square x \to \square \square x \approx 1; \\
(M4) \quad & \lnot \square \lnot \square x \approx \lnot \square x.
\end{align*}
\]

is called an \(m \)-algebra. It is clear that the set of all \(m \)-algebras forms a variety that we denote by \(\mathcal{M} \). All necessary information about monadic Heyting algebras (including \(m \)-algebras) can be found in [1]. An element \(a \) of an \(m \)-algebra is open, if \(a = \square a \). Recall that an \(m \)-algebra is subdirectly irreducible (s.i. for short), if it has exactly two open elements: 0 and 1.

For any element \(a \) of any \(m \)-algebra \(A \), we define the degrees of \(a \) as follows: \(a^0 := 0 \), \(a^1 := \lnot a \), \(a^2 := a \) and for all \(k \geq 0 \) \(a^{2k+3} := a^{2k+1} \to a^{2k} \), \(a^{2k+4} := a^{2k+2} \lor a^{2k+3} \), and we let \(a^\omega := 1 \).

For \(n > 1 \) we denote by \(Z_n \) a single-generated s.i. \(m \)-algebra of cardinality \(n \). The Heyting reduct of \(Z_n \) (H-reduct for short) is a single-generated Heyting algebra with \(n \) elements in which \(\square 1 = 1 \) and \(\square a = 0 \) for all \(a < 1 \). Every algebra \(Z_n \) consists of degrees of its generator that we denote by \(g_n \). \(Z_2 \) is a two-element \(m \)-algebra with generator \(g_2 = 0 \), while by \(Z_1 \) we denote a two-element \(m \)-algebra with generator \(g_1 = 1 \).

Let

\[
P = \prod_{i > 0} Z_i
\]

and \(Z \) be a subalgebra of \(P \) generated by element \(g = (g_1, g_2, \ldots) \),

that is, by the element \(g \) such that \(\pi_i(g) = g_i, i > 0 \), where \(\pi_i \) is a \(i \)-th projection.

Proposition 1. \(Z \) is isomorphic to \(F_{\mathcal{M}}(1) \).

An element \(a \in P \) is called leveled, if there are \(0 < k < \omega \) and \(0 < m < \omega \) such that \(\pi_j(a) = g_j^m \) for all \(j \geq k \). Let \(L \) be a set of all leveled elements of \(P \). The following theorem gives a convenient intrinsic description of \(F_{\mathcal{M}}(1) \).

Theorem 2. \(L = Z \), hence \(F_{\mathcal{M}}(1) \) is isomorphic to a subalgebra of \(P \) consisting of all leveled elements.

As one can see from the following corollary, the structure of \(F_{\mathcal{M}}(1) \) is much more complex than the structure of free single-generated Heyting algebra.
Corollary 3. The following holds

(a) H-reduct of $F_M(1)$ is not finitely generated as Heyting algebra;
(b) $F_M(1)$ contains infinite ascending and descending chains of open elements;
(c) $F_M(1)$ is atomic and it has infinite set of atoms;
(d) Z_2 is the only s.i. subalgebra of $F_M(1)$.

Projective Algebras

In the following theorem we use the notations from [1]: $\varphi(A)$ denotes the H-reduct of A, $\psi(A)$ denotes a relatively complete subalgebra of $\varphi(A)$ defining modal operations, and $\psi(V) = \{\psi(A) : A \in V\}$.

Theorem 4. (comp. [3, Corollary 5.5]) Let $V \subseteq MHA$ be a variety of monadic Heyting algebras. If $A \in V$ is such an algebra that $\varphi(A) = \psi(A)$ and algebra $\psi(A)$ is projective in $\psi(V)$, then A is projective in V.

Corollary 5. If A is at most countable m-algebra and each element of A is open, then A is projective in M.

Proposition 6. Each projective in MHA algebra has Z_2 as a homomorphic image.

Let V be a variety of m-algebras and $A \in V$. Then $A \in V$ is finitely presented in V if $A \cong F_V(n)/\theta$ for some n, where θ is a principal congruence on $F_V(n)$.

The following theorem extends the criterion of projectivity [4, Theorem 5.2] from finite to finitely-presented m-algebras.

Theorem 7. Let V be a variety of m-algebras and $A \in V$ be finitely presented in V. Then A is projective in V if and only if Z_2 is a homomorphic image of A.

Corollary 8. Let V be a variety of m-algebras. Then every finitely presented subalgebra of $F_V(\omega)$ is projective in V. In particular, every finite subalgebra of $F_V(\omega)$ is projective.

Corollary 9. Let V be a variety of m-algebras and $A \in V$ be given by defining relation $t(x_1, \ldots, x_n) = 1$. Then A is projective in V if and only if the term t is satisfiable in Z_2.

Corollary 10. Let V be a variety of m-algebras. Then the problem whether a given finite set of equations defines in V a projective finitely presented algebra is decidable.

Corollary 11. Z_2 is the only projective s.i. m-algebra.

Corollary 12. Let V be a variety of m-algebras. Then the problem whether a given finite set of equations defines in V a projective finitely presented algebra is decidable.

Theorem 13. For every finitely generated m-algebra A the following is equivalent

(a) A has Z_2 as a homomorphic image;
(b) A does not contain an element a such that $\Box a = \Box \neg a$;
(c) quasi-identity $\rho := (\neg \Box x \land \neg \Box \neg x) \equiv 1 \Rightarrow 0$ holds on A.

Corollary 14. The quasivariety Q defined by quasi-identity ρ is primitive and Q contains every primitive quasivariety of m-algebras as a subquasivariety.
References