Projective WS5-Algebras

Alex Citkin

Metropolitan Telecommunications, New York, NY, USA acitkin@gmail.com

The logic WS5 plays an important role in extending Glivenko's Theorem to MIPC (see [2]). The algebraic models for WS5 are monadic Heyting algebras in which the open elements form a Boolean algebra. We study the variety \mathcal{M} of such algebras from the standpoint of projectivity. We give a description of $\mathbf{F}_{\mathcal{M}}(1)$, and we prove a criterion of projectivity of finitely-presented algebra from any of subvarieties of \mathcal{M} .

Free Single-Generated Algebra

An algebra $(A; \land, \lor, \rightarrow, 0, 1, \Box)$, where $(A; \land, \lor, \rightarrow, 0, 1)$ is a Heyting algebra and \Box satisfies the following identities:

 $\begin{array}{ll} (M0) & \Box \mathbf{1} \approx \mathbf{1}; \\ (M1) & \Box x \rightarrow x \approx \mathbf{1}; \\ (M2) & \Box (x \rightarrow y) \rightarrow (\Box x \rightarrow \Box y) \approx \mathbf{1}; \\ (M3) & \Box x \rightarrow \Box \Box x \approx \mathbf{1}; \\ (M4) & \neg \Box \neg \Box x \approx \Box x. \end{array}$

is called an *m*-algebra. It is clear that the set of all m-algebras forms a variety that we denote by \mathcal{M} . All necessary information about monadic Heyting algebras (including m-algebras) can be found in [1]. An element **a** of an m-algebra is *open*, if $\mathbf{a} = \Box \mathbf{a}$. Recall that an m-algebra is subdirectly irreducible (s.i. for short), if it has exactly two open elements: **0** and **1**.

For any element **a** of any m-algebra **A**, we define the degrees of **a** as follows: $\mathbf{a}^0 \coloneqq \mathbf{0}$, $\mathbf{a}^1 \coloneqq -\mathbf{a}$, $\mathbf{a}^2 \coloneqq \mathbf{a}$ and for all $k \ge 0$ $\mathbf{a}^{2k+3} \coloneqq \mathbf{a}^{2k+1} \to \mathbf{a}^{2k}$, $\mathbf{a}^{2k+4} \coloneqq \mathbf{a}^{2k+2}$, and we let $\mathbf{a}^{\omega} \coloneqq \mathbf{1}$.

For n > 1 we denote by \mathbf{Z}_n a single-generated s.i. m-algebra of cardinality n. The Heyting reduct of \mathbf{Z}_n (H-reduct for short) is a single-generated Heyting algebra with n elements in which $\Box \mathbf{1} = \mathbf{1}$ and $\Box \mathbf{a} = \mathbf{0}$ for all $\mathbf{a} < \mathbf{1}$. Every algebra \mathbf{Z}_n consists of degrees of its generator that we denote by \mathbf{g}_n . \mathbf{Z}_2 is a two-element m-algebra with generator $\mathbf{g}_2 = \mathbf{0}$, while by \mathbf{Z}_1 we denote a two-element m-algebra with generator $\mathbf{g}_1 = \mathbf{1}$.

Let

 $\mathbf{P} = \prod_{i>0} \mathbf{Z}_i$ and \mathbf{Z} be a subalgebra of \mathbf{P} generated by element $g = (g_1, g_2, \dots)$,

that is, by the element g such that $\pi_i(g) = g_i, i > 0$, where π_i is a *i*-th projection.

Proposition 1. Z is isomorphic to $\mathbf{F}_{\mathcal{M}}(1)$.

An element $\mathbf{a} \in \mathbf{P}$ is called *leveled*, if there are $0 < k < \omega$ and $0 < m \le \omega$ such that $\pi_j(\mathbf{a}) = \mathbf{g}_j^m$ for all $j \ge k$. Let \mathbf{L} be a set of all leveled elements of \mathbf{P} . The following theorem gives a convenient intrinsic description of $\mathbf{F}_{\mathcal{M}}(1)$.

Theorem 2. $\mathbf{L} = \mathbf{Z}$, hence $\mathbf{F}_{\mathcal{M}}(1)$ is isomorphic to a subalgebra of \mathbf{P} consisting of all leveled elements.

As one can see from the following corollary, the structure of $\mathbf{F}_{\mathcal{M}}(1)$ is much more complex than the structure of free single-generated Heyting algebra.

Projective WS5-Algebras

Alex Citkin

Corollary 3. The following holds

- (a) H-reduct of $\mathbf{F}_{\mathcal{M}}(1)$ is not finitely generated as Heyting algebra;
- (b) $\mathbf{F}_{\mathcal{M}}(1)$ contains infinite ascending and descending chains of open elements;
- (c) $\mathbf{F}_{\mathcal{M}}(1)$ is atomic and it has infinite set of atoms;
- (d) \mathbf{Z}_2 is the only s.i. subalgebra of $\mathbf{F}_{\mathcal{M}}(1)$.

Projective Algebras

In the following theorem we use the notations from [1]: $\varphi(\mathbf{A})$ denotes the H-reduct of \mathbf{A} , $\psi(\mathbf{A})$ denotes a relatively complete subalgebra of $\varphi(\mathbf{A})$ defining modal operations, and $\psi(\mathcal{V}) = \{\psi(\mathbf{A}) \mid \mathbf{A} \in \mathcal{V}\}.$

Theorem 4. (comp. [3, Corollary 5.5]) Let $\mathcal{V} \subseteq \mathsf{MHA}$ be a variety of monadic Heyting algebras. If $\mathbf{A} \in \mathcal{V}$ is such an algebra that $\varphi(\mathbf{A}) = \psi(\mathbf{A})$ and algebra $\psi(\mathbf{A})$ is projective in $\psi(\mathcal{V})$, then \mathbf{A} is projective in \mathcal{V} .

Corollary 5. If \mathbf{A} is at most countable *m*-algebra and each element of \mathbf{A} is open, then \mathbf{A} is projective in \mathcal{M} .

Proposition 6. Each projective in MHA algebra has \mathbf{Z}_2 as a homomorphic image.

Let \mathcal{V} be a variety of m-algebras and $\mathbf{A} \in \mathcal{V}$. Then $\mathbf{A} \in \mathcal{V}$ is *finitely presented* in \mathcal{V} if $\mathbf{A} \cong \mathbf{F}_{\mathcal{V}}(n)/\theta$ for some n, where θ is a principal congruence on $\mathbf{F}_{\mathcal{V}}(n)$.

The following theorem extends the criterion of projectivity [4, Theorem 5.2] from finite to finitely-presented m-algebras.

Theorem 7. Let \mathcal{V} be a variety of *m*-algebras and $\mathbf{A} \in \mathcal{V}$ be finitely presented in \mathcal{V} . Then \mathbf{A} is projective in \mathcal{V} if and only if \mathbf{Z}_2 is a homomorphic image of \mathbf{A} .

Corollary 8. Let \mathcal{V} be a variety of m-algebras. Then every finitely presented subalgebra of $\mathbf{F}_{\mathcal{V}}(\omega)$ is projective in \mathcal{V} . In particular, every finite subalgebra of $\mathbf{F}_{\mathcal{V}}(\omega)$ is projective.

Corollary 9. Let \mathcal{V} be a variety of m-algebras and $\mathbf{A} \in \mathcal{V}$ be given by defining relation $t(x_1, \ldots, x_n) = \mathbf{1}$. Then \mathbf{A} is projective in \mathcal{V} if and only if the term t is satisfiable in \mathbf{Z}_2 .

Corollary 10. Let \mathcal{V} be a variety of *m*-algebras. Then the problem whether a given finite set of equations defines in \mathcal{V} a projective finitely presented algebra is decidable.

Corollary 11. \mathbb{Z}_2 is the only projective s.i. m-algebra.

Corollary 12. Let \mathcal{V} be a variety of *m*-algebras. Then the problem whether a given finite set of equations defines in \mathcal{V} a projective finitely presented algebra is decidable.

Theorem 13. For every finitely generated m-algebra A the following is equivalent

- (a) A has Z₂ as a homomorphic image;
- (b) A does not contain an element a such that $\Box a = \Box \neg a$;
- (c) quasi-identity $\rho := (\neg \Box x \land \neg \Box \neg x) \approx \mathbf{1} \Rightarrow \mathbf{0}$ holds on **A**.

Corollary 14. The quasivariety Q defined by quasi-identity ρ is primitive and Q contains every primitive quasivariety of m-algebras as a subquasivariety.

Projective WS5-Algebras

References

- [1] Guram Bezhanishvili. Varieties of monadic Heyting algebras. I. Studia Logica, 61(3):367–402, 1998.
- [2] Guram Bezhanishvili. Glivenko type theorems for intuitionistic modal logics. Studia Logica, 67(1):89–109, 2001.
- [3] Revaz Grigolia. Free and projective Heyting and monadic Heyting algebras. In Non-classical logics and their applications to fuzzy subsets (Linz, 1992), volume 32 of Theory Decis. Lib. Ser. B Math. Statist. Methods, pages 33–52. Kluwer Acad. Publ., Dordrecht, 1995.
- [4] Robert W. Quackenbush. Demi-semi-primal algebras and Mal'cev-type conditions. *Math. Z.*, 122:166–176, 1971.