Standard completeness for mianorm-based logics with n-contraction, n-mingle, and n-potency axioms

Eunsuk Yang¹

Chonbuk National University, Jeonju, Korea eunsyang@jbnu.ac.kr

1 Introduction

The aim of this paper is to introduce standard completeness results for substructural fuzzy logics based on mianorms (binary monotonic identity aggregation operations on the real unit interval [0,1]) with *n*-contraction, *n*-mingle, and *n*-potency axioms. For this, we note that Baldi [1] introduced Wang's $\mathbf{C}_n \mathbf{UL}$ (Uninorm logic \mathbf{UL} with *n*-potency) as \mathbf{UL} with both the *n*-contraction axiom and the *n*-mingle axiom. However, micanorm- and mianorm-based logics with each of these axioms have not yet been investigated. Furthermore, we can divide *n*-contraction, *n*-mingle, and *n*-potency axioms into right and left ones in the context of non-commutative logic. Here, we introduce such logic systems and their standard completeness via Yang's construction in the style of Jenei–Montagna (see [3, 4]).

2 Logic systems, Algebras, and Standard completeness

Let φ^n and ${}^n\varphi$ stand for $((...(\varphi\&\varphi)\&\cdots\&\varphi)\&\varphi, n \varphi$'s, and $\varphi\&(\varphi\&\cdots\&(\varphi\&\varphi)...)), n \varphi$'s, respectively. We introduce the following extensions of **MIAL** (Mianorm logic, = SL^{ℓ}).

Definition 1. Let $2 \leq n$. $C_n^r MIAL$ is MIAL plus (right n-contraction, c_n^r) $\varphi^{n-1} \to \varphi^n$; $C_n^l MIAL$ is MIAL plus (left n-contraction, c_n^l) ${}^{n-1}\varphi \to {}^n\varphi$; $M_n^r MIAL$ is MIAL plus (right n-mingle, m_n^r) $\varphi^n \to \varphi^{n-1}$; $M_n^l MIAL$ is MIAL plus (left n-mingle, m_n^l) ${}^n\varphi \to {}^{n-1}\varphi$; $P_n^r MIAL$ is MIAL plus (right n-potency, p_n^r) $\varphi^{n-1} \leftrightarrow \varphi^n$; and $P_n^l MIAL$ is MIAL plus (left n-potency, p_n^r) $\varphi^{n-1}\varphi \to {}^n\varphi$.

Definition 2. $Ls = \{C_n^r MIAL, C_n^l MIAL, M_n^r MIAL, M_n^l MIAL, P_n^r MIAL, P_n^l MIAL\}\}.$

An \mathcal{A} -evaluation is a function $v: Fm \to \mathcal{A}$ satisfying: $v(\sharp(\varphi_1, \ldots, \varphi_m)) = \sharp^{\mathcal{A}}(v(\varphi_1), \ldots, v(\varphi_m))$, where $\sharp \in \{\to, \rightsquigarrow, \land, \lor, \&, \top, \bot, \overline{1}, \overline{0}\}$ and $\sharp^{\mathcal{A}} \in \{\backslash, /, \land, \lor, *, \top, \bot, t, f\}$. A formula φ is valid in \mathcal{A} if $v(\varphi) \ge t$ for each \mathcal{A} -evaluation v. An \mathcal{A} -evaluation v is an \mathcal{A} -model of T if $v(\varphi) \ge t$ for each $\varphi \in T$.

Definition 3. For L an extension of MIAL, a MIAL-algebra A is an L-algebra if all axioms of L are valid in A. Especially, for all $x \in A$ and $2 \leq n$, $A \subset_n^r MIAL$ -algebra is a MIAL-algebra satisfying $(c_n^r A) x^{n-1} \leq x^n$; $A \subset_n^l MIAL$ -algebra is a MIAL-algebra satisfying $(c_n^r A) x^{n-1} \leq x^n$; $A \subset_n^l MIAL$ -algebra is a MIAL-algebra satisfying $(m_n^r A) x^n \leq x^{n-1}$; $A \cap M_n^r MIAL$ -algebra is a MIAL-algebra satisfying $(m_n^r A) x^n \leq x^{n-1}$; $A \cap M_n^r MIAL$ -algebra is a MIAL-algebra satisfying $(m_n^l A) nx \leq n-1x$; $A \subset_n^r MIAL$ -algebra is a MIAL-algebra satisfying $(m_n^l A) nx \leq n-1x$; $A \subset_n^r MIAL$ -algebra is a MIAL-algebra is a mix for convenience, we call all these algebras L-algebra.

Theorem 4. (Strong completeness) Let T be a theory over $L \ (\in Ls)$ and φ a formula. $T \vdash_L \varphi$ iff for every linearly ordered L-algebra \mathcal{A} and an \mathcal{A} -evaluation v, if v is an \mathcal{A} -model of T, then $v(\varphi) \geq t$.

Proposition 5. For every finite or countable, linearly ordered L-algebra $\mathbf{A} = (A, \leq_A, \forall, \downarrow, t, f, \land, \lor, *, \backslash, /)$, there is a countable ordered set X, a binary operation \circ on X, and a map h from A into X such that (I) X is densely ordered and has a maximum Max, a minimum Min, and special elements e and ∂ ; (II) (X, \circ, \preceq, e) is a linearly ordered, monotonic groupoid with unit; (III) \circ is conjunctive and left-continuous with respect to (w.r.t.) the order topology on (X, \preceq) ; (IV) h is an embedding of the structure $(A, \leq_A, \forall, \bot, t, f, \land, \lor, *)$ into $(X, \preceq, Max, Min, e, \partial, min, max, \circ)$, and, for all $m, n \in A$, $h(m \setminus n)$ and h(n/m) are the residuated pair of h(m) and h(n) in $(X, \preceq, Max, Min, e, \partial, max, min, \circ)$; and $(V) \circ$ satisfies right and left n-contraction, n-mingle, and n-potency properties corresponding to *.

Theorem 6. (Strong standard completeness) For $L \in Ls$, $T \vdash_L \varphi$ iff for every standard Lalgebra and evaluation v, if $v(\psi) \ge e$ for all $\psi \in T$, then $v(\varphi) \ge e$.

Remark 7. [(i)]

- For L ∈ Ls, L_e is L plus (e, exchange) (φ&ψ) → (ψ&φ). By almost the same construction, we can prove standard completeness for L_e. But this construction does not work for L_a, L plus (a, associativity) (φ&ψ)&χ ↔ φ&(ψ&χ), since the operation ∘ for L_a does not satisfy associativity (see Theorem 7 (v) in [3]).
- 2. The operation \circ in Wang's construction in the style of Jenei–Montagna satisfy associativity (see Theorem 4.3 in [2]). But this construction does not work for n-contraction and n-potency, for given n = 2, since $(m, x) \not\preceq (m, x) \circ (m, x)$ (see p. 212 in [2]).

References

- Baldi, Paolo. A note on standard completeness for some extensions of uninorm logic, 2014, Soft Computing 18, 1463-1470.
- [2] Wang, San-min. Uninorm logic with the n-potency axiom, 2012, Fuzzy Sets and Systems 205, 116-126.
- [3] Yang, Eunsuk. Weakening-free, non-associative fuzzy logics: Micanorm-based logics, 2015, Fuzzy Sets and Systems 276, 43-58.
- [4] Yang, Eunsuk. Basic substructural core fuzzy logics and their extensions: Mianorm-based logics, 2016, Fuzzy Sets and Systems 301, 1-18.