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The finitely valued propositional calculi, which have been described by  Lukasiewicz and
Tarski in [1], are extended to the corresponding predicate calculi. The predicate  Lukasiewicz
(infinitely valued) logic QL is defined in the following standard way. The existential (universal)
quantifier is interpreted as supremum (infimum) in a complete MV -algebra. Then the valid
formulas of predicate calculus are defined as all formulas having value 1 for any assignment.
The functional description of the predicate calculus is given by Rutledge in [2]. Scarpellini in
[3] has proved that the set of valid formulas is not recursively enumerable.

Let L and Lm denote a first-order language and propositional language, respectively, based
on ·,+,→,¬,∃. We fix a variable x in L, associate with each propositional letter p in Lm a
unique monadic predicate p∗(x) in L and define by induction a translation Ψ : Form(Lm) →
Form(L) by putting: i) Ψ(p) = p∗(x) if p is propositional variable, ii) Ψ(α ◦ β) = Ψ(α) ◦Ψ(β),
where ◦ = ·,+,→, iii) Ψ(∃α) = ∃xΨ(α).

Monadic MV -algebras were introduced and studied by Rutledge in [2] as an algebraic model
for the predicate calculus QL of  Lukasiewicz infinite-valued logic, in which only a single indi-
vidual variable occurs. Rutledge followed P.R. Halmos’ study of monadic Boolean algebras. In
view of the incompleteness of the predicate calculus the result of Rutledge in [2], showing the
completeness of the monadic predicate calculus, has been of great interest.

The characterization of monadic MV -algebras as pair of MV -algebras, where one of them
is a special kind of subalgebra (m-relatively complete subalgebra), is given in [4]. MV -algebras
were introduced by Chang in [5] as an algebraic model for infinitely valued  Lukasiewicz logic.
An MV -algebra is an algebra A = (A,⊕,�,∗ , 0, 1) where (A,⊕, 0) is an abelian monoid, and
the following identities hold for all x, y ∈ A : x ⊕ 1 = 1, x∗∗ = x, 0∗ = 1, x ⊕ x∗ = 1,
(x∗⊕ y)∗⊕ y = (y∗⊕ x)∗⊕ x, x� y = (x∗⊕ y∗)∗. An algebra A = (A,⊕,�,∗ ,∃, 0, 1) (for short
(A,∃)) is said to be a monadic MV -algebra (MMV -algebra for short) if A = (A,⊕,�,∗ , 0, 1) is
an MV -algebra and in addition ∃ satisfies the following identities: x ≤ ∃x, ∃(x∨ y) = ∃x∨ ∃y,
∃(∃x)∗ = (∃x)∗, ∃(∃x⊕ ∃y) = ∃x⊕ ∃y, ∃(x� x) = ∃x� ∃x, ∃(x⊕ x) = ∃x⊕ ∃x.

A topological space X is said to be an MV -space iff there exists an MV -algebra A such that
Spec(A) (= the set of prime filters of the MV -algebra A equipped with spectral topology) and X
are homeomorphic. Any MV -space is a Priestley space (X,R) such that R(x) (= {y ∈ X : xRy}
is a chain for any x ∈ X and a morphism between MV -spaces is a strongly isotone map (or
an MV -morphism), i. e. a continuous map ϕ : X → Y such that ϕ(R(x)) = R(ϕ(x)) for all
x ∈ X.

Define on A the binary relation ≡̃ by the following stipulation: x≡̃y iff supp∗(x) = supp∗(y),
where supp∗(x) is defined as the set of all prime filters of A containing the element x [6]. Then, ≡̃
is a congruence with respect to ⊗ and ∨. The resulting set β∗(A)(= A/≡̃) of equivalence classes
is a bounded distributive lattice (which we also call the Belluce lattice of A) (β∗(A),∨,∧, 0, 1),
where β∗(x)∧β∗(y) = β∗(x⊗ y), β∗(x)∨β∗(y) = β∗(x⊕ y) = β∗(x∨ y), β∗(1) = 1, β∗(0) = 0,
β∗(x) is the equivalence class containing the element x.

Q-distributive lattices were introduced by Cignoli in [7]. A Q-distributive lattice is an
algebra (A,∨,∧,∃, 0, 1) such that (A,∨,∧, 0, 1) is a bounded distributive lattice and ∃ is a
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quantifier on A, where: ∃0 = 0, a ∧ ∃a = a,∃(a ∧ ∃b) = ∃a ∧ ∃b,∃(a ∨ b) = ∃a ∨ ∃b.
A Q−space is a triplet (X,R,E) such that (X,R) is a Priestley space and E is an equivalence

relation on X which satisfies the following two conditions: 1) E(U) ∈ P(X) for each U ∈ P(X),
and 2) the equivalence classes for E are closed in X (recall that E(U) is the union of the
equivalence classes which intersect U and P(X) is the set of the clopen increasing subsets of
X).

Let (X,R,E) and (Y, S, F ) be Q-spaces. A Q −mapping from (X,R,E) into (Y, S, F ) is
a continuous and order-preserving function f : X → Y such that E(f−1(V )) = f−1(F (V )) for
each V ∈ P(Y ). Let QD and QD∗ be the category of Q-lattices and Q-spaces respectively.
There exist contravariant functors Q∗ : QD → QD∗ and Q : QD∗ → QD that define a dual
equivalence between QD and QD∗ [7].

We define a covariant functor γ from the category MMV of monadic MV -algebras into the
category of Q-distributive lattices QD in the following way. Let (A,∃) ∈MMV and define a
relative congruence relation ≡̃E with respect to �,∨ and ∃ on the (A,∃): for every x, y ∈ A
x≡̃Ey if and only if supp(x) = supp(y) and supp(∃x) = supp(∃y). Let γ : A → A/≡̃ be a
natural mapping. The resulting set γ(A)(= A/≡̃E) of equivalence classes is a Q-distributive
lattice. For each x ∈ A let us denote by γ(x) the equivalence class of x. Let f : A → B be
an MMV -homomorphism. Then γ(f) is a Q-mapping from γ(A) to γ(B) defined as follows:
γ(f)(γ(x)) = γ(f(x)).

Theorem 1. If (A,∃) ∈ MMV, then γ(A,∃) ∈ QD, and γ is a covariant functor from the
category MMV into the category of Q-distributive lattices QD.

(X,R,E) is named MQ-space if (X,R) is an MV -space, (X,R,E) is a Q-space and:
R(E(x)) = E(R(x)), E(R−1(x)) = R−1(E(x)), R−1(x) ∩ E(x) = R(x) ∩ E(x) = {x}.

Let MQ be the category the objects of which are MQ-spaces and morphisms strongly
isotone Q-mappings. Strongly isotone Q-mappings we name MQ-mappings.

Theorem 2. There exists a contravariant functor MQ∗ from MMV intoMQ: MQ∗(A,∃) =
Q∗(γ(A,∃)) = (F(A), E(∃)), where F(A) is the prime spectrum of γ(A,∃) with the patch topol-
ogy and the inclusion relation and E(∃) = {(F,G) ∈ F(A)2|F ∩ ∃γ(A,∃) = G ∩ ∃γ(A,∃)}.
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