Some properties of zero divisor graphs of lattices

Meenakshi P. Wasadikar
Department of Mathematics, Dr. B. A. M. University, Aurangabad, 431004, India
wasadikar@yahoo.com

Beck [3] introduced the notion of coloring in a commutative ring R as follows. Let G be a simple graph whose vertices are the elements of R and two distinct vertices x and y are adjacent in G if $x y=0$ in R.

Nimbhorkar et al. [8] introduced a graph for a meet-semilattice L with 0 , whose vertices are the elements of L and two distinct elements $x, y \in L$ are adjacent if and only if $x \wedge y=0$. They correlated properties of semilattices with coloring of the associated graph. A nonzero element $a \in L$ is called a zero-divisor if there exists a nonzero $b \in L$ such that $a \wedge b=0$. We denote by $Z(L)$ the set of all zero-divisors of L. We associate a graph $\Gamma(L)$ to L with vertex set $Z^{*}(L)=Z(L)-\{0\}$, the set of nonzero zero-divisors of L and distinct $x, y \in Z^{*}(L)$ are adjacent if and only if $x \wedge y=0$ and call this graph as the zero-divisor graph of L. In a meet-semilattice L with 0 , a nonzero element $a \in L$ is called an atom if there is no $x \in L$ such that $0<x<a$.

MAIN RESULTS

Lemma 1. Let L be a complemented distributive lattice. An element $b \in L$ is an atom in L iff b^{\prime} is the unique end adjacent to b in $\Gamma(L)$.

Lemma 2. Let $L \neq C_{2}$ be a complemented distributive lattice. Then atoms in L are precisely the vertices in $\Gamma(L)$ which are adjacent to an end.

We recall that C_{2} denotes the two element chain.
Lemma 3. Let $L \neq C_{2}$ be a complemented distributive lattice. The complement a^{\prime} of $a \in L$ is also a complement of of a in $\Gamma(L)$. Hence $\Gamma(L)$ is uniquely complemented.

Lemma 4. If $\Gamma(L)$ splits into two subgraphs X and Y via a then a is an atom of L.
However, the converse of Lemma 4 need not hold.
Lemma 5. If $\Gamma(L)$ splits into two subgraphs X and Y via a then $a \leq x$ for every $x \in L-Z(L)$.
Lemma 6. For any lattice L with $0, L-Z(L)$ is a dual ideal.
Theorem 1. Let L be a finite lattice. If $\Gamma(L)$ splits into two subgraphs X and Y via a, then either X or Y is a set of isolated vertices.

Theorem 2. If $\Gamma(L)$ splits into two subgraphs X and Y via a, then $N(a)$ is a maximal element in the set $\{N(x) \mid x \in \Gamma(L)\}$.

The converse need not hold.
Theorem 3. If $a-x$ is an edge in $\Gamma(L)$ and a, x are not pendant vertices then the edge $a-x$ is contained in a 3-cycle or a 4-cycle.

Theorem 4. Every pair of non-pendant vertices in $\Gamma(L)$ is contained in a cycle of length less than or equal to 6 .

The following example shows that 6 is the best possible bound.
Example 1. Let L be the lattice of all positive divisors of $n=4620$ with divisibility as the partial order. Then a, b are adjacent in $\Gamma(L)$ iff the greatest common divisor of a, b is 1 . Consider $a=30$ and $b=154$. Then a, b are non-pendant vertices in $\Gamma(L)$ and these are contained in the 6 -cycle $30-7-5-154-3-11-30$ but not in a cycle of smaller length. Moreover, this cycle is not unique. $30-7-3-154-5-11-30$ is another cycle.

References

[1] D. F. Anderson, F. Andrea, L. Aaron and P. S. Livingston, The zero-divisor graph of a commutative ring II, Lecture Notes in Pure and Applied Mathematices, Marcel Dekker, New York, 220 (2001), 61-72.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[3] I. Beck, Coloring of commutative rings, J. of Algebra, 116 (1988), 208226.
[4] F. R. Demeyer, T. Mckenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup forum, 65 (2002), 206-214.
[5] G. Grätzer, General Lattice Theory, Birkhauser, Basel 1998.
[6] F. Harary, Graph Theory, Narosa, New Delhi, 1988.
[7] S. K. Nimbhorkar, M. P. Wasadikar and Lisa Demeyer, Coloring of meet semilattices, Ars Combin., 84 (2007), 97 - 104.
[8] S. K. Nimbhorkar, M. P. Wasadikar and M. M. Pawar, Coloring of lattices, Math. Slovaca, 60 (2010), 419-434.
[9] D. B. West, Introduction to Graph Theory, Prentice - Hall, New Delhi, 1996.

