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Introduction. It is by now generally acknowledged that coalgebras for a Set-functor unify
a wide variety of dynamic systems [16]. The classical study of their behavior and behavioral
equivalence is based on qualitative reasoning – that is, Boolean, meaning that two systems (the
systems’ states) are bisimilar (equivalent) or not. But in recent years there has been a growing
interest in studying the behavior of systems in terms of quantity. There are situations where
one behaviour is smaller than (or, is simulated by) another behaviour, or there is a measurable
distance between behaviours in terms of real numbers, as it was done in [15, 18]. This can be
achieved by enlarging the coalgebraic set-up to the category of (small) enriched V -categories
V -cat [10] (V is a commutative quantale), which subsumes both ordered sets and (generalised)
metric spaces [12].

Coalgebras over generalised metric spaces. The project of developing multi-valued logic
for coalgebras on V -cat has started in [1] by extending functors H : Set → Set (and more
generally Set-functors which naturally carry a V -metric structure) to V -cat-functors. In this
talk, we shall briefly outline the extension procedure: using the density of the discrete functor
D : Set → V -cat, we apply H to the V -nerve of a V -category, and then take an appropriate
quotient in V -cat. If H preserves weak pullbacks, then the above can be obtained using Barr’s
relation lifting in a form of “lowest-cost paths” (see also[18, Ch. 4.3], [9]). For example, the
extension of the powerset functor yields the familiar Pompeiu-Hausdorff metric, if the quantale
is completely distributive.

A logical framework. The next step, following the well-established tradition in coalge-
braic logics (see e.g. [14]), is to seek for a contravariant V -cat-enriched adjunction - on top
of which to develop coalgebraic logics– involving, on one side, a category of spaces Sp, and
on the other side, a category of algebras Alg, obtained eventually by restricting the adjunc-

tion V -catop
[−,V ]

--
> V -cat

[−,V ]

mm . Moreover, we would want for Alg be a variety in the “world of

V -categories”, at least monadic over V -cat. In classical (Boolean) coalgebraic logics (no enrich-
ment), this is achieved by taking Sp to be Set, and Alg to be the category of Boolean algebras
(see e.g. [7]). One step further, the case of the simplest quantale V = 2 targets positive coal-
gebraic logics [2], from an order-enriched point of view, by choosing Sp to be the category of
posets and monotone maps, and Alg to be the category of bounded distributive lattices – which
is a finitary ordered variety [4].

In the present work we focus on the unit interval quantale V = [0, 1], endowed with the
usual order, the  Lukasiewicz tensor given by truncated sum r ⊗ s = max(0, r + s − 1), with
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unit e = 1 and internal hom (residual) [r, s] = min(1− r + s, 1). Our original motivation to do
so came from (at least) the following reason: the unit interval naturally carries an MV-algebra
structure. Recall that the MV-algebras are the models for  Lukasiewicz multi-valued logic, and
that their variety is generated by [0,1] [5, 6]. As the propositional (Boolean) logic is the base
for the usual coalgebraic logic, we looked for a connection between coalgebras based on [0, 1]-
categories (that is, “bounded-by-1” quasi-metric spaces) and multi-valued logics. However, we
shall explain in the talk that MV-algebras are not adequate for our purpose, and propose a
different solution instead, detailed below.

An alternative to MV-algebras. The logical connection we therefore propose uses an
adaptation of the Priestley duality as in [8]. We introduce the notion of a distributive lattice
with adjoint pairs of V -operators (dlao(V )) as a bounded distributive lattice (A,∧,∨, 0, 1),
endowed with a family of adjoint operators (r � − a t (r,−) : A → A)r∈V , such that the
conditions below are satisfied for all r, r′ ∈ V and all a, a′ ∈ A:

1� a = a (r ⊗ r′)� a = r � (r′ � a)

0� a = 0 (r ∨ r′)� a = (r � a) ∨ (r′ � a)

t (1, a) = a t (r ⊗ r′, a) = t (r,t (r′, a))

t (0, a) = 1 t (r ∨ r′, a) = t (r, a)∧ t (r′, a)

Notice that by adjointness r � − preserves finite joins and t (r,−) preserves finite meets. A
morphism of dlao(V ) is a bounded distributive lattice map preserving all the adjoint operators
r�− and t (r,−). Let DLatAO(V ) be the ordinary category of distributive lattices with adjoint
pairs of V -operators (notice that DLatAO(V ) is an algebraic category).

Each dlao(V ) A becomes a V -category [3, 13] with V -homs A(a, a′) =
∨
{r ∈ [0, 1] |

r � a ≤ a′} =
∨
{r ∈ [0, 1] | a ≤ t (r, a′)}, and each dlao(V )-morphism is also a V -

functor. The V -categories thus obtained are antisymmetric, finitely complete and cocom-
plete [17]. Consequently, DLatAO(V ) is a V -cat-category, and it follows that the forgetful
functor DLatAO(V )→ V -cat is monadic V -cat-enriched.

The ordinary dual category to DLatAO(V ) can be obtained by adapting the arguments in
[8]: an object is a Priestley space (X, τ,≤), endowed with a family of ternary relations (Rr)r∈V ,
which satisfy, besides the topological conditions from [8, pp. 184-185], the requirements that
R1 is the order relation on X, and that Rr ◦ Rr′ = Rr⊗r′ and Rr ∨ Rr′ = Rr∨r′ hold. The
morphisms are continuous bounded maps [8, Section 2.3]. Denote by RelPriest(V ) the resulting
category. Then the dual equivalence RelPriest(V )op ∼= DLatAO(V ) is obtained by restricting
the usual Priestley duality.

Using the above duality, we can transport the V -cat-category structure on RelPriest(V ),
thus rendering the duality RelPriest(V )op ∼= DLatAO(V ) V -cat-enriched. The V -cat-category
structure such exhibited on RelPriest(V ) does not say too much at first sight. To gain more
insight, we use the lax-algebra framework of [9], in the context of (T,V )-categories, where T is
a monad on Set which laxly distributes over the V -valued powerset monad. We shall see that
each relational Priestley space (X, τ,≤, (Rr)r∈V ) is in fact a V -compact topological space [11]
– an algebra for the extension of the ultrafilter monad to V -cat (see [9, Ch. III.5.2] for the
cases V = 2 and V = [0,∞]). The duality RelPriest(V )op ∼= DLatAO(V ) can now be seen
as a V -cat-duality between a category of certain compact V -topological spaces (in particular
V -categories) and a category of algebraic V -categories. In future work, more properties of the
above duality are planned to be investigated.
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