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Introduction. It is by now generally acknowledged that coalgebras for a Set-functor unify
a wide variety of dynamic systems [16]. The classical study of their behavior and behavioral
equivalence is based on qualitative reasoning — that is, Boolean, meaning that two systems (the
systems’ states) are bisimilar (equivalent) or not. But in recent years there has been a growing
interest in studying the behavior of systems in terms of quantity. There are situations where
one behaviour is smaller than (or, is simulated by) another behaviour, or there is a measurable
distance between behaviours in terms of real numbers, as it was done in [15, 18]. This can be
achieved by enlarging the coalgebraic set-up to the category of (small) enriched ¥ -categories
¥-cat [10] (¥ is a commutative quantale), which subsumes both ordered sets and (generalised)
metric spaces [12].

Coalgebras over generalised metric spaces. The project of developing multi-valued logic
for coalgebras on ¥-cat has started in [1] by extending functors H : Set — Set (and more
generally Set-functors which naturally carry a ¥ -metric structure) to ¥-cat-functors. In this
talk, we shall briefly outline the extension procedure: using the density of the discrete functor
D : Set — Y-cat, we apply H to the ¥-nerve of a ¥-category, and then take an appropriate
quotient in ¥-cat. If H preserves weak pullbacks, then the above can be obtained using Barr’s
relation lifting in a form of “lowest-cost paths” (see also[18, Ch. 4.3], [9]). For example, the
extension of the powerset functor yields the familiar Pompeiu-Hausdorff metric, if the quantale
is completely distributive.

A logical framework. The next step, following the well-established tradition in coalge-
braic logics (see e.g. [14]), is to seek for a contravariant ¥-cat-enriched adjunction - on top
of which to develop coalgebraic logics— involving, on one side, a category of spaces Sp, and
on the other side, a category of algebras Alg, obtained eventually by restricting the adjunc-
-7
tion Y-cat®?’__T Y-cat. Moreover, we would want for Alg be a variety in the “world of
(-7
¥ -categories”, at least monadic over ¥-cat. In classical (Boolean) coalgebraic logics (no enrich-
ment), this is achieved by taking Sp to be Set, and Alg to be the category of Boolean algebras
(see e.g. [7]). One step further, the case of the simplest quantale ¥ = 2 targets positive coal-
gebraic logics [2], from an order-enriched point of view, by choosing Sp to be the category of
posets and monotone maps, and Alg to be the category of bounded distributive lattices — which
is a finitary ordered variety [4].
In the present work we focus on the unit interval quantale ¥ = [0, 1], endowed with the
usual order, the Lukasiewicz tensor given by truncated sum r ® s = max(0,r + s — 1), with
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unit e = 1 and internal hom (residual) [r, s] = min(1 — r + s,1). Our original motivation to do
so came from (at least) the following reason: the unit interval naturally carries an MV-algebra
structure. Recall that the MV-algebras are the models for Lukasiewicz multi-valued logic, and
that their variety is generated by [0,1] [5, 6]. As the propositional (Boolean) logic is the base
for the usual coalgebraic logic, we looked for a connection between coalgebras based on [0, 1]-
categories (that is, “bounded-by-1" quasi-metric spaces) and multi-valued logics. However, we
shall explain in the talk that MV-algebras are not adequate for our purpose, and propose a
different solution instead, detailed below.

An alternative to MV-algebras. The logical connection we therefore propose uses an
adaptation of the Priestley duality as in [8]. We introduce the notion of a distributive lattice
with adjoint pairs of ¥ -operators (dlao(¥#')) as a bounded distributive lattice (A4, A,V,0,1),
endowed with a family of adjoint operators (r © — 4 M (r,—) : A — A),cv, such that the
conditions below are satisfied for all r,7/ € ¥ and all a,a’ € A:

l1oa=a rer)yoa=re(r'©a)
00a=0 (rvrYoa=(r®a)V (@ ®a)
M (l,a) =a N (rer,a)=dt(rdh (' a)

M (0,a) =1 M (rvr,a)=t(r,a)Ah(r,a)

Notice that by adjointness r ® — preserves finite joins and M (r, —) preserves finite meets. A
morphism of dlao(¥’) is a bounded distributive lattice map preserving all the adjoint operators
r®—and M (r,—). Let DLatAO(¥) be the ordinary category of distributive lattices with adjoint
pairs of ¥ -operators (notice that DLatAO(¥") is an algebraic category).

Each dlao(¥#) A becomes a ¥-category [3, 13] with ¥-homs A(a,a’) = V{r € [0,1] |
roa < d} =\V{r elol | a<mh(ra)}, and each dlao(?¥)-morphism is also a ¥-
functor. The ¥-categories thus obtained are antisymmetric, finitely complete and cocom-
plete [17]. Consequently, DLatAO(¥') is a ¥-cat-category, and it follows that the forgetful
functor DLatAO(¥') — ¥-cat is monadic ¥-cat-enriched.

The ordinary dual category to DLatAO(¥") can be obtained by adapting the arguments in
[8]: an object is a Priestley space (X, 7, <), endowed with a family of ternary relations (R;),cv,
which satisfy, besides the topological conditions from [8, pp. 184-185], the requirements that
R, is the order relation on X, and that R, o R,y = R,g and R,V R, = R,y,» hold. The
morphisms are continuous bounded maps [8, Section 2.3]. Denote by RelPriest(¥') the resulting
category. Then the dual equivalence RelPriest(¥)°P =~ DLatAO(¥) is obtained by restricting
the usual Priestley duality.

Using the above duality, we can transport the ¥-cat-category structure on RelPriest(?),
thus rendering the duality RelPriest(?)°P = DLatAO(?") ¥-cat-enriched. The ¥-cat-category
structure such exhibited on RelPriest(¥") does not say too much at first sight. To gain more
insight, we use the lax-algebra framework of [9], in the context of (T, ¥')-categories, where T is
a monad on Set which laxly distributes over the #-valued powerset monad. We shall see that
each relational Priestley space (X, 7, <, (R,).cv) is in fact a #-compact topological space [11]
— an algebra for the extension of the ultrafilter monad to ¥-cat (see [9, Ch. IIL.5.2] for the
cases ¥ = 2 and ¥ = [0,00]). The duality RelPriest(¥)°? = DLatAO(¥') can now be seen
as a Y-cat-duality between a category of certain compact ¥-topological spaces (in particular
¥ -categories) and a category of algebraic ¥ -categories. In future work, more properties of the
above duality are planned to be investigated.
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