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Partially ordered structures are ubiquitous in theoretical computer science: knowledge rep-
resentation, abstract interpretation in static analysis, resource modelling, protocol or access
rights modelling in formal security, etc, the list of applications is enormous. Being able to
formally reason about transition systems over posets therefore seems important. The natural
formalism to reason about transition systems is undoubtedly the class of modal logics, but
most are tailored to transition structures over sets. This is a direct consequence of the fact
that most modal logics are boolean. Positive modal logic is the exception, and is most naturally
interpreted in partially ordered Kripke structures (see for example [2, 6]).

Arguably, the most natural and powerful framework to study boolean modal logics in uni-
form and systematic way, is the theory of Boolean Coalgebraic Logics (henceforth BCL, see e.g.
[3]). In its abstract flavour, it is parametrised by an endofunctor L : BA → BA which builds
modal terms over a boolean structure, an endofunctor T : Set → Set which builds the transi-
tion structures over which the modal terms are to be interpreted, and a natural transformation
δ : LP → PT (where P : Setop → BA is the powerset functor) which implements the interpre-
tation by associating sets of acceptable successors states to each modal term over a predicate.
This data, and the dual adjunction between Set and BA, is traditionally summarized in the
following diagram
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where S is the functor sending a boolean algebra to the set of its ultrafilters.

To develop an equally powerful framework for reasoning about transition structures over
posets, it seems natural to study Positive Coalgebraic Logics (henceforth PCL). In fact, work
in this direction has already started, see for example [7, 1]. We pursue this work further and
present PCL in full generality, i.e. at the same level of generality as its boolean counterpart.
Moreover, given the close kinship between the two theories, we will show that the wheel does
not have to be re-invented every time, and that many BCLs have a canonical positive fragment
which inherits useful properties of its boolean parent. In fact, adapting well-known situations
from the boolean to the positive setting is one of the guiding principles of this work.

Let us sketch the main features of the theory of PCLs and its relationship with BCLs.
First of all, whilst the mathematical universe hosting the theory of BCLs is ordinary category
theory, the most natural environment to discuss PCLs is category theory enriched over Pos, the
category of posets and monotone maps. Indeed, on the model side the category Pos is naturally
enriched over itself, while on the syntax side we will consider endofunctors L′ : DL → DL over
the category of distributive lattice, which is also Pos-enriched. Moreover, whilst boolean modal
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logics are axiomatized by equations, represented categorically as coequalizers, the axioms of
standard positive modal logic (see [5, 2, 6]) are given by inequations, which are very naturally
interpreted as coinserters, the Pos-enriched analogue of coequalizers. In this Pos-enriched
framework, we have an analogue of Diagram (1) given by
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where S ′ is the functor sending a distributive lattice to the poset of its prime filters (under
inclusion), and P ′ is the functor sending a poset to the distributive lattice of its upsets.

Coalgebras over posets. Transition structures over posets will be formalized as coalgebras
for an endofunctor T ′ : Pos → Pos. Here, we are already confronted with a situation which
perfectly captures the philosophy of this work. How do we choose such a functor? In practice
both our requirements and our intuition are guided by examples of endofunctors T : Set → Set,
for example non-deterministic computations modelled as coalgebras for the powerset functor
P : Set → Set, or models of graded modal logic as coalgebras for the multiset functor B : Set →
Set. The solution is to adapt these well-know functors to posets. We use the posetification
procedure developed in [1] and define for each Set-endofunctor T its posetification by T ′ :
Pos → Pos by T ′ = LanDDT , where D is the functor sending a set to its discrete poset. It
was shown in [1] that T ′ can be computed using certain coinserters, and we now have a whole
repertoire of Set-endofunctors for which we have computed the posetification: the powerset
functor, the neighbourhood functor, the monotone neighbourhood functor, the multiset functor,
etc, as well as a grammar to combine them.

Syntax. The syntax of a positive coalgebraic logic will be given by a locally monotone (i.e.
Pos-enriched) endofunctor L′ : DL → DL. Whilst [1] focused defining such functors directly
from the semantics, here we once again focus on adapting existing boolean logics. This leads us
to an operation which is dual to that of posetification, and which we call positivisation: given
an endofunctor L : BA → BA, we define its positivisation L′ : DL → DL by L′ = RanUUL
where U : BA → DL is the obvious forgetful functor. The positivisation of a BA-endofunctor
can be computed explicitly via inserters. We can distinguish two classes of positivisation:
those for which the natural transformation β : L′U → UL given by universality of the right
(enriched) Kan extension is an iso, and all the others. The former correspond to boolean logics
L : BA → BA which have a monotone presentation. We have computed the positivisation of
the functors defining the boolean modal logics with (i) no axioms, (ii) monotonicity only, (iii)
the standard axioms of modal logic, and (iv) the axioms of graded modal logic.

Semantics. Following our guiding philosophy, we would like to canonically turn a boolean
coalgebraic logic (L, T, δ) with nice properties (for example completeness) into a positive coalge-
braic logic (L′, T ′, δ′), hopefully with equally nice properties. First we need to build a semantic
natural transformation δ′ : L′P ′ → P ′T ′, from the transformation δ : LP → PT . By combining
the posetification and the positivisation procedures described above, and the properties of P ′,
one can build a transformation δ′ : L′P ′ → P ′T ′ from δ in a universal way. Moreover, if δ
and β : L′U → UL are component-wise injective, so is δ′, in other words completeness transfers
from the boolean logic to its canonical positive fragment. Similarly, strong completeness via the
coalgebraic Jónsson-Tarski theorem – which is equivalent to the adjoint (or mate) δ̂ of δ being
component-wise split epi [8, 9, 4] – transfers from a boolean coalgebraic logic to its positive
fragment. The transfer of expressivity is more involved.
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