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We consider first-order normal modal and superintuitionistic predicate logics in a signature
with only predicate letters and perhaps with equality. A logic is defined in a standard way, as
a certain set of formulas, cf. [2], sec. 2.6.

Every logic L without equality has the minimal extension L= with equality ([2], sec. 2.14.).
It is well-known that completeness of L in the standard Kripke semantics does not imply the
completeness of L=. So there is a natural question — how to axiomatize the logic with equality
characterized by Kripke frames for L. As we show, quite often (but not always) this is done by
the extensions L=d := L= + DE in the intuitionistic case and L=c := L= + CE in the modal
case, where

DE := ∀x∀y(x = y ∨ ¬(x = y)) (the axiom of decidable equality),
CE := ∀x∀y(3(x = y) ⊃ x = y) (the axiom of closed equality).

Here we deal with two kinds of semantics: the semantics of predicate Kripke frames (K) and the
semantics of Kripke frames with equality (KE) (equivalent to the semantics of Kripke sheaves);
cf. [2], sections 3.2, 3.5, 3.6. Recall that a predicate Kripke frame (PKF) over a propositional
Kripke frame F = (W,R) is a pair (F,D), where D = (Du)u∈W is a family of non-empty
expanding domains (uRv implies Du ⊆ Dv). A predicate Kripke frame with equality (KFE) is a
triple (F,D,�), where (F,D) is a PKF and �= (�u)u∈W is a family of expanding equivalence
relations �u⊆ Du ×Du (uRv implies �u⊆�v). The notions of validity in these semantics are
standard. The set of formulas valid in a PKF or a KFE F is called the logic of F (modal or
superintuitionistic) and denoted by ML(F) or IL(F), or by ML=(F) or IL=(F) for logics with
equality.

The logics of a class of frames C are ML(=)(C) :=
⋂
{ML(=)(F) | F ∈ C},

IL(=)(C) :=
⋂
{IL(=)(F) | F ∈ C}; these logics are called Kripke (K-) complete if C is a class of

PKFs, Kripke sheaf (KE-) complete if C is a class of KFEs.
Note that a KFE (W,R,D,�) validates CE iff its reflexive transitive closure (W,R∗, D,�)

validates DE iff
∀u, v∈W ∀a, b∈Du (uR∗v & a �v b⇒ a �u b).

So CE and DE are obviously valid in every PKF, since a PKF can be regarded as a KFE, in
which �u are the identity relations.

Usually KE-completeness transfers from L to L= and L=d (or L=c); cf. [2], theorems 3.8.3,
3.8.4, 3.8.7, 3.8.8 for the details.

Proposition 1. (1) Suppose F |= CE is a KFE over a propositional frame F , F ∗ is the reflexive
transitive closure of F and one of the following conditions holds: (i) F ∗ is an S4-tree; (ii) F ∗

is directed; (iii) F has a constant domain.
Then there exists a PKF F′ such that ML=(F′) = ML=(F).
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(2) The same holds for the intuitionistic case and F 
 DE.

Hence we obtain
Theorem 1. (1) Suppose L is a K-complete modal predicate logic of one of the following types:
(i) L is complete w.r.t. frames over trees; (ii) L ` 3�p ⊃ �3p; (iii) L ` ∀x�P (x) ⊃ �∀xP (x)
(the Barcan formula). Then L=c is K-complete.

(2) Suppose L is aK-complete superintuitionistic predicate logic of one of the following types:
(i) L is complete w.r.t. frames over trees; (ii) L ` J (= ¬p∨¬¬p); (iii) L ` CD (= ∀x(P (x)∨
q) ⊃ ∀xP (x) ∨ q). Then L=d is K-complete.

Remark. Recall that L = QH + CD + J is Kripke incomplete [1]. We do not know if L=d is
Kripke complete in this case.

However, not every KFE validating DE is equivalent to a PKF. This allows us to construct
Kripke complete logics L, for which L=d is Kripke incomplete.

Consider the weak De Morgan law

J2 := ¬(p0∧p1∧p2) ⊃ ¬(p0∧p1)∨¬(p0∧p2)∨¬(p1∧p2),

and the frame F0 := (W0,≤), with W0 := {u0} ∪ {uij | i, j∈{1, 2}}, which is a poset with the
root u0 and (uij < ui′j′) iff (i < i′). Then F0 validates J2, but not J . IL(KF0) denotes the
superintuitionistic logic of all PKFs over F0 (which coincides with the logic of all KFEs over
F0).

Theorem 2. Let L be a predicate logic such that QH + J2 ⊆ L⊆ IL(KF0). Then the logic
L=d is Kripke incomplete.

We do not know if the segment mentioned in Theorem 2 contains finitely axiomatizable Kripke
complete logics.
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