First-order cologic for profinite structures

Alex Kruckman
Indiana University
Bloomington, IN, USA
akruckma@indiana.edu

1 Logic for LFP Categories

The domain of a first-order structure \(M \) is a (typically infinite) set. First-order logic provides a finitary syntax for describing properties of \(M \) by way of how \(M \) is constructed from finite pieces, i.e. as the directed colimit of all finite subsets of \(M \). Explicitly, a first-order formula describes a property of a tuple of elements of \(M \), and quantifiers allow us to explore how this tuple can be expanded to larger finite tuples. This perspective on the expressive power of first-order logic is elegantly captured by the Ehrenfeucht–Fraïssé game.

A locally finitely presentable (LFP) category is one in which every object is a directed colimit of objects which are finitary in a precise sense. In direct analogy with ordinary first-order logic for \(\text{Set} \), we develop a logic for describing properties of an object \(M \) in an LFP category (possibly expanded by extra “finitary” structure) by way of how \(M \) is constructed from finitary pieces.

To be more precise, an object \(x \) in a category \(D \) is called finitely presentable if the functor \(\text{Hom}_D(x, -) \) preserves directed colimits. The category \(D \) is called locally finitely presentable if it is cocomplete, every object is a directed colimit of finitely presentable objects, and the full subcategory \(C \) of finitely presentable objects is essentially small. We call \(D \) the category of domains and \(C \) the category of variable contexts, and we fix a set \(A \) of isomorphism representatives for the objects of \(C \), called arities.

Then a signature \(L \) consists of a set of relation symbols with associated arities from \(A \), together with a finitary endofunctor \(F : D \to D \), and an \(L \)-structure is an object \(M \) in \(D \), given with an \(F \)-algebra structure \(\eta : F(M) \to M \), and interpretations of the relation symbols: given an arity \(n \in A \) and an object \(M \in D \), an \(n \)-tuple from \(M \) is just an arrow \(n \to M \), and an \(n \)-ary relation is a subset of \(\text{Hom}(n, M) \).

We can now describe the logic \(\text{FO}(D, L) \): For an arity \(n \) and a variable context \(x \), an \(n \)-term in \(x \) is a map \(n \to T(x) \), the term algebra (i.e. free \(F \)-algebra) on \(x \). An atomic formula is an equality between two \(n \)-terms or an \(n \)-ary relation symbol applied to an \(n \)-term. General formulas are built from atomic formulas by ordinary Boolean combinations and by quantifiers: for each arrow \(f : x \to y \) between contexts, we associate a universal and existential quantifier \(\exists_f \) and \(\forall_f \) which quantify over extensions of \(x \)-tuples to \(y \)-tuples, respecting \(f \). Of course there is a completely natural semantics for evaluation of terms and satisfaction of formulas in \(L \)-structures.

2 The first-order translation

To each \(M \) in \(D \), we associate the finite-limit preserving presheaf \(\text{Hom}_D(-, M) : A^{\text{op}} \to \text{Set} \). In fact, by Gabriel-Ulmer duality (see [1]), \(D \) is equivalent to the category \(\text{Lex}(A^{\text{op}}, \text{Set}) \) of finite-limit preserving presheaves on \(A \). Such presheaves can be viewed as models for a certain (ordinary) first-order theory, in a language with a sort for each object in \(A \). Extending this equivalence from objects of \(D \) to \(L \)-structures, we obtain the following theorem.
Theorem 1. For every LFP category D and signature L, there is an ordinary multi-sorted first-order signature $PS(D, L)$ and a theory T_{PS} in this signature, so that the category of L-structures is equivalent to the category of models of T_{PS}. Further, there is an explicit satisfaction-preserving translation from formulas in $FO(D, L)$ to first-order $PS(D, L)$-formulas.

This interpretation of $FO(D, L)$ in ordinary first-order logic allows us to easily import theorems and notions (compactness, Löwenheim-Skolem, interpretability, stability, etc.) from first-order model theory.

3 Cologic

Whenever B is a category with finite limits, the category $pro-B$ (the formal completion of B under codirected limits) is co-LFP, i.e. $(pro-B)^{op}$ is LFP. Then the logic $FO((pro-B)^{op}, L)$ expresses properties of “cotuples” from an object M, i.e. maps $M \to x$, where $x \in B$. For example, a cotuple from a Stone space S (an object of $Stone = pro-FinSet$) is a continuous map from S to a finite discrete space, or equivalently a partition of M into clopen sets. And a cotuple from a profinite group G (an object of $pro-FinGrp$) is a group homomorphism from G to a finite group.

These logics provide a unified framework for the model theory of profinite structures, with connections to several independent bodies of work. I will mention a few:

1. Projective (or Dual) Fraïssé theory, as developed by Irwin and Solecki [3] and recently reformulated in terms of corelations by Panagiotopoulos [5]. The dual ultrahomogeneity exhibited by projective Fraïssé limits can be expressed by $\forall \exists$ sentences in the logic $FO(Stone, L)$.

2. The “cologic” of profinite groups (e.g. Galois groups), developed by Cherlin, van den Dries, and Macintyre [2] and by Chatzidakis, which plays an important role in the model theory of PAC fields. This logic is presented in a multi-sorted first-order framework, which is essentially equivalent to the first-order translation of Theorem 1, applied to $FO(pro-FinGrp, \emptyset)$.

3. The theory of coalgebraic logic, in the special case of cofinitary functors on Stone spaces (see, e.g. [4]), is exactly the theory of equationally defined classes in $FO(Stone, L)$, since L-structures are coalgebras for cofinitary functors. This theory has connections to modal logic; for example, when the functor F is the Vietoris functor, $FO(Stone, L)$ embeds modal logics on descriptive general frames.

References