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The algebraic semantics for distributive Full Lambek logic DFL is the class of algebras
A = (A,∧,∨,⊗, /, \,1,0) such that (A,∧,∨) is a distributive lattice (i.e. x ∧ (y ∨ z) ≤ (x ∧
y) ∨ (x ∧ z)), and (A,⊗,1) is a monoid, and 0 is an arbitrary element of A, and x ⊗ y ≤ z
iff x ≤ z/y iff y ≤ x \ z for all x, y, z ∈ A. Meanwhile the algebraic semantics for the logic of
Bunched Implication BI is the class of Heyting algebras equipped with an additional monoidal
operation ⊗ and associated implications / and \ satisfying x ⊗ y ≤ z iff x ≤ z/y iff y ≤
x \ z. Thus BI has the intuitionistic implication → and the multiplicative left / and right \
implications. Here we propose a new proof calculus formalism called bunched hypersequents
which can be used to study those subclasses of these algebras that satisfy suitable inequalities.
In particular, we construct analytic proof calculi such that the inequalities that hold on the class
of algebras are precisely those that can be proved in the proof calculus in a finite number of steps.
Here the term analytic means that the proofs in the proof calculus need only contain subterms of
the inequality to be proved. In the language of proof-theory, such proof calculi are said to have
the subformula property. The subformula property (and the ensuing restriction on the space
of possible proofs) is crucial for using the calculus for investigating various logical properties
such as decidability, complexity, interpolation, conservativity, standard completeness [10], and
for developing automated deduction procedures.

Gentzen [7] presented the first analytic calculi, for classical and intuitionistic logic, in his
sequent calculus formalism. For example, his sequent calculus for intuitionistic logic consists
of a small number of unary and binary rules (functions) on sequents; a sequent has the form
X ⇒ A where X is a ;-separated list of formulas and A is a formula. By repeated application
of the rules, complicated sequents can be proved (derived) starting from initial sequents of the
form p ⇒ p such that B1; . . . ;Bn ⇒ A is derivable iff B1 ∧ . . . ∧ Bn → A is a theorem of
intuitionistic logic (i.e. the corresponding inequality is valid on the class of Heyting algebras).
This calculus can be used to give direct proofs of e.g. consistency (there is no derivation of
⇒ ⊥) and optimal complexity bounds for the derivability relation.

Unfortunately there are many logics which do not support an analytic treatment in the
sequent calculus formalism. The reason is that the form of the proof rules in that formalism
are too restrictive. In the last three decades this has led to the introduction of many other
formalisms of varying expressivity; prominent examples include the hypersequent [14, 1], dis-
play calculus [2] (viewed from a more algebraic perspective as residuated frames [6]), labelled
calculus [16, 12] and bunched sequent calculus [5, 11]. The reason for the numerous different
formalisms is the tradeoff that exists between an expressive formalism which yields an analytic
treatment of many different logics and the difficulty in using such a formalism to prove met-
alogical properties. As a slogan: typically, the formalism most amenable for proof-theoretic
investigation of a logic is the simplest formalism which supports its analyticity.

For distributive substructural logics (including relevant logics)—the logics that are of interest
here—bunched sequent calculi, also known as Dunn-Mints systems [5, 11], have been proposed



Hypersequent Calculi for Distributive Substructural Logics and Extensions of BI Ciabattoni and Ramanayake

as a means of developing an analytic formulation. In this formalism, sequents have the form
X ⇒ A where A is a formula and X is a list of formulas with two list separators: (“;”) is the list
separator corresponding to the logical connective ∧ and (“,”) is the list separator corresponding
to ⊗. Bunched calculi have also been employed to define analytic calculi for the logic of Bunched
Implication BI [15]. This logic has been used to reason about dynamic data structures [13] and
is a propositional fragment of (intuitionistic) separation logic. Note that although these logics
can be formalised using the more powerful formalism of display calculi, the advantage of using
a simpler formalism is evident, e.g., when searching for proofs of decidability and complexity
of the logic (see [8, 3, 9]).

In this paper we introduce a new proof theoretic framework called bunched hypersequents.
Bunched hypersequents extend the bunched sequents by adding a hypersequent structure. In
analogy with its extension of traditional sequents, we consider a non-empty set of bunched
sequents rather than just a single bunched sequent. This structure allows the definition of new
rules which apply to several bunched sequents simultaneously thus increasing the expressive
power of the bunched sequent framework. Although a bunched hypersequent is a more com-
plex data structure than a bunched sequent, it is nevertheless a simple and natural extension,
retaining many of the useful properties of the sequent calculus (recall the slogan).

The expressive power of the new formalism is demonstrated by introducing analytic bunched
hypersequent calculi for a large class of extensions of distributive Full Lambek calculus DFL.
The extensions are obtained by suitably extending the procedure in [4] for transforming Hilbert
axioms into structural rules. We then consider the case of extensions of the logic of bunched
implication BI. Extensions of BI by a certain class of axioms including restricted weakening
and restricted contraction are obtained.

Our attempt to extend the BI calculus to obtain a simple analytic calculus for BBI
(boolean BI; known to be undecidable) met with a surprising obstacle. While a hyperse-
quent structure extending the bunched calculus for BI can be defined (and hence also logics
extending BI via the exploitation of the hypersequent structure), there are technical difficul-
ties associated with the interpretation of hypersequent structure at intermediate points of the
derivation. In response, we turn the investigation on its head and formulate an analytic hyper-
sequent calculus for a consistent extension of BI which derives a limited boolean principle. The
properties of this logic, including its decidability problem, invite further investigation.
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