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Dualities between algebras and representation spaces are a staple topic at the interface of
algebra and logic. While dualities are often produced with the aid of dualizing objects as
codomains for both algebra and space homomorphisms, other techniques are also useful. As
an addition to the palette of alternative techniques, diagrammatic duality is a method for
obtaining new dualities founded on existing ones. Whenever algebras of a certain class are
equivalent to diagrams in a category of known dualizable algebras, diagrammatic duality
furnishes representation spaces for the algebras in the class by examining dual diagrams in the
category of representation spaces for the known dualizable algebras. We present two examples:
Nelson algebras, and algebras from an arbitrary variety.

A diagram in a category C is a graph map F :D → C from a quiver (or directed graph) D
to (the underlying graph of) C. The diagram is proper if its domain D is small. For a quiver D
and category C, let

(
CD

)
0
be the class of diagrams F :D → C. For given diagrams F :D → C

and G:D → C, let
(
CD

)
(F,G) be the class of natural transformations τ : F → G. Then

CD forms a category. If D is a proper diagram, then categories of the form CD are known as
diagram categories.

Suppose that C and A are categories of algebras and homomorphisms. Suppose that there is
an equivalence C ∼= CA between C and a subcategory CA of a diagram category AV with given
domain diagram V . Then the objects of C are known as diagrammatic algebras (relative to A).
In this context it is often convenient to abuse notation and suppress the distinction between C
and CA, merely stating that a C-algebra C is equivalent to a diagram γ:V → A.

A duality denotes a dual equivalence D : A � X : E in which A is a category of algebras
(in the sense of modern universal algebra) and homomorphisms, while X is a concrete category
of objects known as spaces. For an algebra A, the image AD is called the representation space
of A. For a space X, the image XE is called the algebra represented by X. The functor D is
called the dual space functor. The functor E is called the represented algebra functor.

For Esakia duality [1], take A to be the category Heyt of Heyting algebras. Take X to
be the category Esakia of Esakia spaces, partially ordered Stone spaces where the downset
C≥ of each clopen subset C is clopen. For a Heyting algebra H, the representation space
HD = Heyt(H, 2) carries the induced order and subspace topology from the product 2H . An
Esakia space S represents the algebra SE = Esakia(S, 2), a Heyting subalgebra of 2S .

For Lindenbaum-Tarski duality [2, p. xiv], [8], take A to be the category Set of sets
(algebras without operations). Take X to be the category CABA of complete atomic Boolean
algebras and homomorphisms preserving all joins and meets. Consider the set 2 = {0, 1},
possibly endowed with Boolean algebra structure. For a set A, the representation space AD

is defined to be the set 2A or P(A) of (characteristic functions of) subsets of A, with the
singletons as atoms. For a complete atomic Boolean algebra B, the represented algebra BE :=
CABA(B, 2) is naturally isomorphic to the set of atoms of B.
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Nelson algebras

Nelson algebras [6], also known as “N-lattices” [4], provide algebraic semantics for Nelson’s
constructive logic with strong negation [3, 5]. Consider an algebra (B,∨,∧,→,∼, 0, 1) equipped
with three binary operations ∨,∧,→, and with ∼ as a unary operation (strong negation).
Suppose that (B,∨,∧, 0, 1) is a bounded distributive lattice, with ≤ as the lattice ordering.
Then the algebra is a Nelson algebra if the following conditions are satisfied: the reduct
(B,∨,∧,∼, 0, 1) is a De Morgan algebra; a reflexive, transitive relation ≼ is defined on B
by setting x ≼ y iff (x → y) → (x → y) = x → y; the lattice order relation x ≤ y on B is
equivalent to x ≼ y and ∼ x ≼ ∼ y; the equivalence relation χ, defined on B by x χ y iff x ≼ y
and y ≼ x, is a congruence on the reduct (B,∨,∧,→) such that the quotient (B,∨,∧,→, 0, 1)χ

is a Heyting algebra; and for all x, y ∈ B, one has (x∧ ∼ x, 0) ∈ χ and (∼ (x → y), x∧ ∼ y) ∈ χ.
Now a congruence α on a Heyting algebra H is Boolean if the quotient Hα is a Boolean algebra.
Then the category of Nelson algebras is equivalent to the category of pairs (H,α), where H
is a Heyting algebra and α is a Boolean congruence on H [6, Th. 4.1]. Thus Nelson algebras
are diagrammatic relative to (the category Heyt of) Heyting algebras: Consider the quiver V
given as a:h → b. Then a Nelson algebra B is equivalent to a diagram β:V → Heyt sending
the arrow a to the natural projection of the Boolean congruence αB from the Heyting algebra
Bχ. By this means, Nelson algebras have a diagrammatic duality based on Esakia duality for
Heyting algebras.

Classical universal algebras

Consider a type τ : Ω → N, with operator domain Ω. Then a τ -algebra (A, τ) is a set A with
an operation ω:Aωτ → A corresponding to each operator or element ω of Ω. Let τ denote the
category of τ -algebras and homomorphisms between them [7, §§IV1.1–2]. The Ω-cospan is a
quiver Ω∞ with edge set Ω. Its vertex set is the disjoint union Ω + ⊤ of Ω with a singleton
⊤ = {∞}. The tail map is the identity function on Ω, while the head map is the unique
function Ω → ⊤. A τ -algebra A is equivalent to a diagram α: Ω∞ → Set with edge map
α1:ω 7→ (ω:Aωτ → A). Thus the edge map sends each operator to the corresponding operation
on the set A. It follows that algebras from any variety are diagrammatic relative to sets, and
thus possess a diagrammatic duality based on Lindenbaum-Tarski duality for sets.
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