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The main content of this talk concerns recent joint work (see [4]) with Mai Gehrke and
Daniela Petrişan on the understanding, at the level of recognisers, of the effect of applying a
layer of various kinds of quantifiers in the context of logic on words.

Two approaches have been remarkably effective in the study of languages: the algebraic
one, and the logical one. Whereas the former relies on the notions of recognition by a monoid
and of syntactic monoid of a language, the latter is based on a semantic on finite words. Let
us briefly recall these two approaches.

Consider a finite set A (the alphabet) and an A-language, i.e. a subset L of the monoid A∗

free on A. We say that a monoid M recognises the language L provided there is a monoid
morphism φ : A∗ →M and P ⊆M such that φ−1(P ) = L. This condition is equivalent to the
existence of a homomorphism A∗ → M whose kernel saturates L. The maximal congruence
∼L on A∗ saturating L is defined by (x, y) ∈∼L if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ A∗. The
quotient A∗/ ∼L is called the syntactic monoid of L, and one can define a regular language to
be one whose syntactic monoid is finite.

It turns out that, beyond the regular case, monoids do not provide a notion of recognition
that is fine-grained enough to be useful. This led us to introduce in [3] the notion of a Boolean
space with an internal monoid (BM, for short), which behaves well with respect to recognition
in the non-regular setting. A BM is a pair (X,M) given by a Boolean space X (i.e, a compact
and Hausdorff space that is zero-dimensional) along with a dense subset M carrying a monoid
structure, such that ∀m ∈M the maps λm, ρm : M →M given by left and right multiplication
by m, respectively, can be extended to continuous functions on X. An example is provided by
the pair (β(A∗), A∗), where β(A∗) is the Stone-Čech compactification of the discrete set A∗.
Now, define a morphism (X,M)→ (Y,N) to be a continuous function X → Y whose restriction

is a monoid morphism from M to N . Recalling the bijection L 7→ L̂ between P(A∗) and the
clopens of β(A∗), we say that a BM (X,M) recognises the language L if there is a morphism

φ : (β(A∗), A∗)→ (X,M) and a clopen subset C ⊆ X such that φ−1(C) = L̂. This extends the
classical definition of recognition in the regular case.

The second approach stems from the interpretation of a word w ∈ A∗, say of length n, as a
relational structure on the set {1, . . . , n}. These structures are equipped with (interpretations
of) unary relations Pa, one for each a ∈ A, selecting the positions in the word w in which the
letter a appears. Additional relations, such as the natural order on {1, . . . , n}, are sometimes
considered in specific situations. Every (first-order, or higher-order) sentence ψ in a language
interpretable over words determines a language Lψ ⊆ A∗ consisting of all those words satisfying
ψ. However, if ψ(x) is a formula containing a free first-order variable x, in order to be able to
interpret the free variable we extend the alphabet to (A × {0, 1})∗ and use the more compact
notation a1a

′
2a
′
3 · · · an for the word (a1, 0)(a2, 1)(a3, 1) · · · (an, 0) ∈ (A×{0, 1})∗. The language
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Lψ(x) ⊆ (A × {0, 1})∗ is then the collection of all the words in the extended alphabet, with
only one marked position, in which the formula ψ(x) is satisfied when the variable x points
at that position. Finally, one can consider the quantified formula ∃x.ψ(x) which yields the
language over the alphabet A∗ of all those words a1 · · · an such that there exists 1 ≤ i ≤ n with
a1 · · · a′i · · · an ∈ Lψ(x). There are other quantifiers of interest in language theory. An example
is provided by modular quantifiers: a word w satisfies the sentence ∃p mod qx.ψ(x) if there are
p mod q positions in the word w in which the formula ψ(x) is satisfied.

The question we pose, and answer, is the following: Suppose a language, defined by a formula
ψ(x), is recognised by a BM (X,M). If Q is some quantifier (e.g. a modular quantifier), how can
we construct a BM recognising the language associated to the sentence Qx.ψ(x)? The question
is motivated by open problems on the separation of Boolean circuit complexity classes, where
classes of languages are characterised in terms of logic fragments.

The answer employs duality-theoretic and categorical tools. Several quantifiers of interest
can be modelled using commutative semirings S (e.g. S = Z/qZ for the modular quantifiers)
or, from a categorical viewpoint, the free S-semimodule monad on Set (=the category of sets
and functions). On the way to our answer, we prove that whenever an operation on languages
— quantification being a particular case — can be modelled by a finitary commutative monad
(in the sense of [6]) T on Set, then a recogniser for the languages obtained by applying the

operation represented by T can be built by means of the profinite monad T̂ on the category
of Boolean spaces and continuous functions. The profinite monad T̂ associated to T was first
defined in [1], building on the ideas introduced in [2], and it is based on the notion of codensity
monad of a functor which has its origins in the work of Kock in the 60’s (see also [5]).

In the case of quantifiers modelled by a finite and commutative semiring S, that is when
T is the free S-semimodule monad, we provide a concrete description of the Boolean space
T̂X, for X any Boolean space, in terms of certain S-valued measures on X. If in addition
the semiring S is idempotent (hence a semilattice), T̂X can be equivalently described as the
space of all continuous functions X → S, where S is equipped with the topology of all downsets
with respect to its semilattice order. We remark that, in the case S = 2 is the two-element
Boolean algebra, T̂ is the Vietoris monad on Boolean spaces (already related to the existential
quantifier in [3]) and we essentially recover the classical description of the Vietoris space in
terms of functions into the Sierpiński space.
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