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The main content of this talk concerns recent joint work (see [4]) with Mai Gehrke and
Daniela Petrisan on the understanding, at the level of recognisers, of the effect of applying a
layer of various kinds of quantifiers in the context of logic on words.

Two approaches have been remarkably effective in the study of languages: the algebraic
one, and the logical one. Whereas the former relies on the notions of recognition by a monoid
and of syntactic monoid of a language, the latter is based on a semantic on finite words. Let
us briefly recall these two approaches.

Consider a finite set A (the alphabet) and an A-language, i.e. a subset L of the monoid A*
free on A. We say that a monoid M recognises the language L provided there is a monoid
morphism ¢: A* — M and P C M such that ¢—1(P) = L. This condition is equivalent to the
existence of a homomorphism A* — M whose kernel saturates L. The maximal congruence
~p, on A* saturating L is defined by (x,y) €~p if uzv € L & uyv € L for all u,v € A*. The
quotient A*/ ~p, is called the syntactic monoid of L, and one can define a regular language to
be one whose syntactic monoid is finite.

It turns out that, beyond the regular case, monoids do not provide a notion of recognition
that is fine-grained enough to be useful. This led us to introduce in [3] the notion of a Boolean
space with an internal monoid (BM, for short), which behaves well with respect to recognition
in the non-regular setting. A BM is a pair (X, M) given by a Boolean space X (i.e, a compact
and Hausdorff space that is zero-dimensional) along with a dense subset M carrying a monoid
structure, such that Vm € M the maps A\, prm: M — M given by left and right multiplication
by m, respectively, can be extended to continuous functions on X. An example is provided by
the pair (8(A*), A*), where B(A*) is the Stone-Cech compactification of the discrete set A*.
Now, define a morphism (X, M) — (Y, N) to be a continuous function X — Y whose restriction
is a monoid morphism from M to N. Recalling the bijection L — L between P(A*) and the
clopens of B(A*), we say that a BM (X, M) recognises the language L if there is a morphism
¢: (B(A*), A*) = (X, M) and a clopen subset C C X such that ¢~!(C) = L. This extends the
classical definition of recognition in the regular case.

The second approach stems from the interpretation of a word w € A*, say of length n, as a
relational structure on the set {1,...,n}. These structures are equipped with (interpretations
of) unary relations P,, one for each a € A, selecting the positions in the word w in which the
letter a appears. Additional relations, such as the natural order on {1,...,n}, are sometimes
considered in specific situations. Every (first-order, or higher-order) sentence v in a language
interpretable over words determines a language L,, C A* consisting of all those words satisfying
1. However, if ¢(x) is a formula containing a free first-order variable z, in order to be able to
interpret the free variable we extend the alphabet to (A x {0,1})* and use the more compact
notation ajahal - - - a, for the word (aq,0)(az,1)(as, 1) - (an,0) € (A x {0,1})*. The language
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Ly@) € (A x {0,1})* is then the collection of all the words in the extended alphabet, with
only one marked position, in which the formula ¥ (x) is satisfied when the variable z points
at that position. Finally, one can consider the quantified formula Jz.¢)(x) which yields the
language over the alphabet A* of all those words aq - - - a,, such that there exists 1 < i < n with
ay---aj---ap € Ly(y). There are other quantifiers of interest in language theory. An example
is provided by modular quantifiers: a word w satisfies the sentence 3, mod 2.9 (x) if there are
p mod ¢ positions in the word w in which the formula ¢ (z) is satisfied.

The question we pose, and answer, is the following: Suppose a language, defined by a formula
(), is recognised by a BM (X, M). If Q is some quantifier (e.g. a modular quantifier), how can
we construct a BM recognising the language associated to the sentence Qz.1¢)(x)? The question
is motivated by open problems on the separation of Boolean circuit complexity classes, where
classes of languages are characterised in terms of logic fragments.

The answer employs duality-theoretic and categorical tools. Several quantifiers of interest
can be modelled using commutative semirings S (e.g. S = Z/qZ for the modular quantifiers)
or, from a categorical viewpoint, the free S-semimodule monad on Set (=the category of sets
and functions). On the way to our answer, we prove that whenever an operation on languages
— quantification being a particular case — can be modelled by a finitary commutative monad
(in the sense of [6]) T on Set, then a recogniser for the languages obtained by applying the
operation represented by 7' can be built by means of the profinite monad T on the category
of Boolean spaces and continuous functions. The profinite monad T associated to T was first
defined in [1], building on the ideas introduced in [2], and it is based on the notion of codensity
monad of a functor which has its origins in the work of Kock in the 60’s (see also [5]).

In the case of quantifiers modelled by a finite and commutative semiring S, that is when
T is the free S-semimodule monad, we provide a concrete description of the Boolean space
TX, for X any Boolean space, in terms of certain S-valued measures on X. If in addition
the semiring S is idempotent (hence a semilattice), TX can be equivalently described as the
space of all continuous functions X — S, where S is equipped with the topology of all downsets
with respect to its semilattice order. We remark that, in the case S = 2 is the two-element
Boolean algebra, T' is the Vietoris monad on Boolean spaces (already related to the existential
quantifier in [3]) and we essentially recover the classical description of the Vietoris space in
terms of functions into the Sierpinski space.
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