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Lattice logic is the {∧,∨,>,⊥}-fragment of classical propositional logic without distributivity. Lattice
logic is captured by a basic Gentzen-style sequent calculus (cf. e.g. [18]), which we refer to as L0. Such a
calculus has the usual rules of Identity (restricted to atomic formulas with empty contexts on both sides of
the sequent), Cut (with empty contexts on both sides of the sequents) and the standard introduction rules
for the logical connectives in additive form.1 L0 is perfectly adequate as a proof calculus for lattice logic,
when this logic is regarded in isolation. However, the main interest of lattice logic lays in it serving as base
for a variety of logics, which are either its axiomatic extensions (e.g. the logics of modular and distributive
bounded lattices and their variations [16]), or its proper language-expansions (e.g. the full Lambek calculus
[17, 8], bilattice logic [2], orthologic [9], linear logic [15]). Hence, it is sensible to require of an adequate
proof theory of lattice logic to be able to account in a modular way for these logics as well. A source
of nonmodularity arises from the fact that L0 lacks structural rules. Indeed, the additive formulation of
the introduction rules of L0 encodes the information which is stored in standard structural rules such as
weakening, contraction, associativity, and exchange. Hence, one cannot use L0 as a base to capture logics
aimed at ‘negotiating’ these rules, such as the Lambek calculus [17] and other substructural logics [8].

To remedy this, in [10] the first and the fourth author introduced two sequent calculi, which we refer here
as L1 and L2. L1 is a sequent calculus that adopts the visibility2 principle isolated by Sambin, Battilotti
and Faggian in [19] to formulate a general strategy for cut elimination. L2 is a sequent calculus which enjoys
the display3 principle isolated by Belnap in [1]. Properness (i.e. closure under uniform substitution of all
parametric parts in rules, see [20]) is the main interest and added value of L2 and allows for the smoothest
Belnap-style proof of cut-elimination. The second attempt is motivated by and embeds in a more general
theory—that of the so-called proper multi-type calculi, introduced in [13, 5, 6, 4] and further developed in
[7, 3, 14, 11]—which creates a proof-theoretic environment designed on the basis of algebraic and order-
theoretic insights (see [12]), which aims at encompassing in a uniform and modular way a very wide range
of non-classical logics, spanning from dynamic epistemic logic, PDL, and inquisitive logic to lattice-based
substructural (modal) logics. Proper multi-type calculi are a natural generalization of Belnap’s display
calculi [1] (later refined by Wansing’s notion of proper display calculi [20]), the salient features of which
they inherit. L1 and L2 have a structural language and the introduction rules for the logical connectives
are formulated in multiplicative form.4 This more general formulation of the introduction rules implies that
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1A logical rule is in additive form if each occurrence of non-active formulas in the conclusion occurs in each premise and
conversely (in the literature such rules are also called context-sharing rules). Moreover, in the unary introduction rules for
conjunction and disjunction only one immediate subformula of the principal formula appears as active formula in the premise.
An introduction rule for the logical connectives is in multiplicative form if each occurrence of non-active formulas in the
conclusion occurs in exactly one premise and conversely (in the literature such rules are also called context-splitting rules).
Moreover, in the unary introduction rules for conjunction and disjunction both immediate subformulas of the principal formula
appear as active formulas in the premise.

2A sequent calculus verifies the visibility property if both the auxiliary formulas and the principal formula of the introduction
rules for the logical connectives occur in an empty context.

3A sequent calculus verifies the display property if each substructure can be isolated on exactly one side of the turnstile by
means of structural rules. Notice that display property implies visibility, but not vice versa.

4The multiplicative form of the introduction rules is the most important aspect in which L1 departs from the calculus of
[19]. Indeed, the introduction rules for conjunction and disjunction in [19] are in additive form.



the structural rules of weakening, exchange, associativity, and contraction are not anymore subsumed by the
introduction rules. L1 and L2 are more uniform and modular compared to L0 in a precise sense. All these
calculi block the derivation of the distributivity axiom, as well as of any other weaker form of distributivity.
However, in the literature there are no instances of analytic sequent calculi in which axiomatic extension of
lattice logic which are weaker than distributive lattice logic are captured using structural rules.

In this talk I will expand on an ongoing work on modular proof theory for axiomatic extensions and
expansions of lattice logic. In particular, I will present a sequent calculus enjoying a weaker form of visibility
that derives the modularity axiom but still blocks distributivity, thanks to a generalized form of the binary
logical rules for conjunction and disjunction.
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