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Many-valued modal logics provide a natural formalisation of reasoning with modal notions
such as knowledge or action in contexts where the two-valued classical picture is not sufficient.
Such contexts typically involve reasoning with incomplete, inconsistent or graded information.

A prominent example of a (non-modal) many-valued logic designed to deal with incomplete
and incosistent information is is the Dunn—Belnap four-valued logic [4, 2, 3]. Ginsberg [7]
generalized the Dunn—Belnap four-valued matrix FOUR by introducing the notion of a bilattice
and shows that bilattices emerge naturally in many computer science applications; see also
[5, 6].

Formally, bilattices are sets equipped with two partial orders <; (the “truth order”) and
<; (the “information order”) that both satisfy the lattice properties (plus other assumptions
that need not be discussed now). Intuitively, <; orders members of a bilattice with respect to
how truthful they are; <; orders them with respect to how much information they represent.
For instance, in Belnap’s four-valued matrix the value “true” is above the value “both” with
respect to <; but below it with respect to <;.

Arieli and Avron [1] study a (non-modal) logic based on bilattices using the full language
{NVLE 0,8, 1L, T, —, D} containing constants for maximal (T,¢) / minimal (L, f) ele-
ments and suprema (V,®) / infima (A, ®) operators for both of the orderings, with two nega-
tions (-, —) and an implication connective (D).

Several modal extensions of Dunn-Belnap and Arieli-Avron have been studied recently
[9, 8 10]. These modal extensions add a modal operator O to either the full Arieli-Avron
language [8, 10] or to its fragment {A,V,—, f, D} [9]. The operator O is interpreted in terms of
the truth-order infimum (simplifying a bit, the value of O¢ in world w of a Kripke model is the
truth-order infimum of the values of ¢ in worlds w’ accessible from w.)

However, a modal operator O; corresponding to the information-order infimum is a natural
addition to consider. If worlds in a Kripke model are seen as “sources” of information, then
the value of O;¢ at w is the minimal information about ¢ on which all the sources agree. If
accessible worlds are seen as possible outcomes of some information-modifying operation (such
as adding or removing information), then the value of 0;¢ at w is the minimal information about
¢ that is guaranteed to be preserved by the operation. (This extension is briefly considered but
not pursued in [8, 10]).

The present paper studies the bimodal bilattice logic arising from such an extension. It
is well known that O; is expressible in any language extending {A,V,—, L, 0}; define O;¢ :=
(L A—=0O=¢) v O¢p. We focus here on the case where L is not available and extend the modal
language used in [9] with O;. For the sake of simplicity, we use Belnap’s FOUR as our bilattice
of truth values (the non-modal logic of arbitrary bilattices is identical to the the non-modal
logic of FOUR, [1]).

Our main technical result is a sound and complete axiomatization. The axiomatization
reflects the fact that O;¢ has a designated value (i.e. one of T,t) iff O¢ has a designated
value; but 0O, is distinctive in the context of negation. More specifically, we add the following
axioms to the non-modal base: O¢ = O;¢, O-¢ = -0;¢, (-0¢ D f) = O(=¢ D f), Ot,
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(O¢ A O%) D O(¢p A ), together with the inference rule

DY
O¢p DOy’

Potential applications of the logic in knowledge representation and expressiveness of the

language are discussed as well. The work done in this paper is preliminary — a version of the
framework with many-valued accessibility is a topic for future research.
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